These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 28019019)
1. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. Trimborn S; Thoms S; Brenneis T; Heiden JP; Beszteri S; Bischof K Physiol Plant; 2017 Jun; 160(2):155-170. PubMed ID: 28019019 [TBL] [Abstract][Full Text] [Related]
2. The Response of Three Southern Ocean Phytoplankton Species to Ocean Acidification and Light Availability: A Transcriptomic Study. Beszteri S; Thoms S; Benes V; Harms L; Trimborn S Protist; 2018 Dec; 169(6):958-975. PubMed ID: 30453274 [TBL] [Abstract][Full Text] [Related]
3. Photophysiology in two major southern ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Arrigo KR; Mills MM; Kropuenske LR; van Dijken GL; Alderkamp AC; Robinson DH Integr Comp Biol; 2010 Dec; 50(6):950-66. PubMed ID: 21558252 [TBL] [Abstract][Full Text] [Related]
4. Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light. Hoppe CJM; Holtz LM; Trimborn S; Rost B New Phytol; 2015 Jul; 207(1):159-171. PubMed ID: 25708812 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation. Heiden JP; Thoms S; Bischof K; Trimborn S J Phycol; 2018 Aug; 54(4):505-517. PubMed ID: 29791031 [TBL] [Abstract][Full Text] [Related]
6. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean. Lasbleiz M; Leblanc K; Armand LK; Christaki U; Georges C; Obernosterer I; Quéguiner B FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27515734 [TBL] [Abstract][Full Text] [Related]
7. THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) AND FRAGILARIOPSIS CYLINDRUS (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE(1). Alderkamp AC; Kulk G; Buma AG; Visser RJ; Van Dijken GL; Mills MM; Arrigo KR J Phycol; 2012 Feb; 48(1):45-59. PubMed ID: 27009649 [TBL] [Abstract][Full Text] [Related]
8. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. DiTullio GR; Grebmeier JM; Arrigo KR; Lizotte MP; Robinson DH; Leventer A; Barry JP; VanWoert ML; Dunbar RB Nature; 2000 Apr; 404(6778):595-8. PubMed ID: 10766240 [TBL] [Abstract][Full Text] [Related]
9. Changes in the Rubisco to photosystem ratio dominates photoacclimation across phytoplankton taxa. Vandenhecke JM; Bastedo J; Cockshutt AM; Campbell DA; Huot Y Photosynth Res; 2015 Jun; 124(3):275-91. PubMed ID: 25862645 [TBL] [Abstract][Full Text] [Related]
10. Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. Pausch F; Bischof K; Trimborn S PLoS One; 2019; 14(9):e0221959. PubMed ID: 31525212 [TBL] [Abstract][Full Text] [Related]
11. PHYTOPLANKTON SELENIUM REQUIREMENTS: THE CASE FOR SPECIES ISOLATED FROM TEMPERATE AND POLAR REGIONS OF THE SOUTHERN HEMISPHERE(1). Wake BD; Hassler CS; Bowie AR; Haddad PR; Butler EC J Phycol; 2012 Jun; 48(3):585-94. PubMed ID: 27011074 [TBL] [Abstract][Full Text] [Related]
14. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton. Schuback N; Schallenberg C; Duckham C; Maldonado MT; Tortell PD PLoS One; 2015; 10(7):e0133235. PubMed ID: 26171963 [TBL] [Abstract][Full Text] [Related]
15. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum. Conway TM; Hoffmann LJ; Breitbarth E; Strzepek RF; Wolff EW PLoS One; 2016; 11(7):e0158553. PubMed ID: 27384948 [TBL] [Abstract][Full Text] [Related]
16. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity. Ou G; Wang H; Si R; Guan W Harmful Algae; 2017 Sep; 68():118-127. PubMed ID: 28962974 [TBL] [Abstract][Full Text] [Related]
17. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO Shi D; Hong H; Su X; Liao L; Chang S; Lin W J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [TBL] [Abstract][Full Text] [Related]
18. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom. Li W; Wang T; Campbell DA; Gao K Mar Environ Res; 2020 Sep; 160():104965. PubMed ID: 32291249 [TBL] [Abstract][Full Text] [Related]
19. In contrast to diatoms, cryptophytes are susceptible to iron limitation, but not to ocean acidification. Camoying MG; Thoms S; Geuer JK; Koch BP; Bischof K; Trimborn S Physiol Plant; 2022 Jan; 174(1):e13614. PubMed ID: 35199361 [TBL] [Abstract][Full Text] [Related]
20. A story of resilience: Arctic diatom Biswas H Front Plant Sci; 2022; 13():1028544. PubMed ID: 36438134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]