These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 28019019)
21. Functional responses of smaller and larger diatoms to gradual CO Li W; Ding J; Li F; Wang T; Yang Y; Li Y; Campbell DA; Gao K Sci Total Environ; 2019 Aug; 680():79-90. PubMed ID: 31102831 [TBL] [Abstract][Full Text] [Related]
22. The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Cai T; Feng Y; Wang Y; Li T; Wang J; Li W; Zhou W Front Microbiol; 2022; 13():851149. PubMed ID: 35801105 [TBL] [Abstract][Full Text] [Related]
23. NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Diaz JM; Plummer S; Hansel CM; Andeer PF; Saito MA; McIlvin MR Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16448-16453. PubMed ID: 31346083 [TBL] [Abstract][Full Text] [Related]
24. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea). Sharma D; Biswas H; Bandyopadhyay D Environ Sci Pollut Res Int; 2022 Mar; 29(13):19244-19261. PubMed ID: 34714479 [TBL] [Abstract][Full Text] [Related]
25. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms. Mouget JL; Rosa P; Tremblin G J Photochem Photobiol B; 2004 Jul; 75(1-2):1-11. PubMed ID: 15246344 [TBL] [Abstract][Full Text] [Related]
26. Freezing, Melting, and Light Stress on the Photophysiology of Ice Algae: Ex Situ Incubation of the Ice Algal diatom Fragilariopsis cylindrus (Bacillariophyceae) Using an Ice Tank. Yoshida K; Seger A; Kennedy F; McMinn A; Suzuki K J Phycol; 2020 Oct; 56(5):1323-1338. PubMed ID: 32464687 [TBL] [Abstract][Full Text] [Related]
27. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Marchetti A; Cassar N Geobiology; 2009 Sep; 7(4):419-31. PubMed ID: 19659798 [TBL] [Abstract][Full Text] [Related]
28. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H. Qu CF; Liu FM; Zheng Z; Wang YB; Li XG; Yuan HM; Li N; An ML; Wang XX; He YY; Li LL; Miao JL Mar Pollut Bull; 2017 Jul; 120(1-2):184-191. PubMed ID: 28511941 [TBL] [Abstract][Full Text] [Related]
29. Light-modulated responses of growth and photosynthetic performance to ocean acidification in the model diatom Phaeodactylum tricornutum. Li Y; Xu J; Gao K PLoS One; 2014; 9(5):e96173. PubMed ID: 24828454 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms that increase the growth efficiency of diatoms in low light. Fisher NL; Halsey KH Photosynth Res; 2016 Aug; 129(2):183-97. PubMed ID: 27312336 [TBL] [Abstract][Full Text] [Related]
31. Size scaling of photophysiology and growth in four freshly isolated diatom species from Ryder Bay, western Antarctic peninsula. Kulk G; Buist A; van de Poll WH; Rozema PD; Buma AGJ J Phycol; 2019 Apr; 55(2):314-328. PubMed ID: 30449029 [TBL] [Abstract][Full Text] [Related]
33. Influence of Nutrient Stress on the Relationships between PAM Measurements and Carbon Incorporation in Four Phytoplankton Species. Napoléon C; Raimbault V; Claquin P PLoS One; 2013; 8(6):e66423. PubMed ID: 23805221 [TBL] [Abstract][Full Text] [Related]
34. Ocean acidification alters the nutritional value of Antarctic diatoms. Duncan RJ; Nielsen DA; Sheehan CE; Deppeler S; Hancock AM; Schulz KG; Davidson AT; Petrou K New Phytol; 2022 Feb; 233(4):1813-1827. PubMed ID: 34988987 [TBL] [Abstract][Full Text] [Related]
35. Effect of ocean acidification on iron availability to marine phytoplankton. Shi D; Xu Y; Hopkinson BM; Morel FM Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213 [TBL] [Abstract][Full Text] [Related]
36. Enhanced biological carbon consumption in a high CO2 ocean. Riebesell U; Schulz KG; Bellerby RG; Botros M; Fritsche P; Meyerhöfer M; Neill C; Nondal G; Oschlies A; Wohlers J; Zöllner E Nature; 2007 Nov; 450(7169):545-8. PubMed ID: 17994008 [TBL] [Abstract][Full Text] [Related]
37. Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: A laboratory experiment. Li X; Roevros N; Dehairs F; Chou L PLoS One; 2017; 12(11):e0188615. PubMed ID: 29190826 [TBL] [Abstract][Full Text] [Related]
38. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Key T; McCarthy A; Campbell DA; Six C; Roy S; Finkel ZV Environ Microbiol; 2010 Jan; 12(1):95-104. PubMed ID: 19735282 [TBL] [Abstract][Full Text] [Related]
39. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Wu Y; Zhang M; Li Z; Xu J; Beardall J Photochem Photobiol; 2020 Sep; 96(5):1074-1082. PubMed ID: 32222969 [TBL] [Abstract][Full Text] [Related]
40. Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica. Hippmann AA; Schuback N; Moon KM; McCrow JP; Allen AE; Foster LJ; Green BR; Maldonado MT PLoS One; 2017; 12(8):e0181753. PubMed ID: 28837661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]