These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 28019241)
1. A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies. Nikkhoo M; Wang JL; Abdollahi M; Hsu YC; Parnianpour M; Khalaf K Proc Inst Mech Eng H; 2017 Feb; 231(2):127-137. PubMed ID: 28019241 [TBL] [Abstract][Full Text] [Related]
2. Recovering the mechanical properties of denatured intervertebral discs through Platelet-Rich Plasma therapy. Khalaf K; Nikkhoo M; Ya-Wen Kuo ; Yu-Chun Hsu ; Parnianpour M; Campbell-Kyureghyan N; Haghpanahi M; Jaw-Lin Wang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():933-6. PubMed ID: 26736416 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation. Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111 [TBL] [Abstract][Full Text] [Related]
4. Rheological and dynamic integrity of simulated degenerated disc and consequences after cross-linker augmentation. Hsu YC; Kuo YW; Chang YC; Nikkhoo M; Wang JL Spine (Phila Pa 1976); 2013 Nov; 38(23):E1446-53. PubMed ID: 23873230 [TBL] [Abstract][Full Text] [Related]
5. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748 [TBL] [Abstract][Full Text] [Related]
6. [An experimental study on effect of autologous platelet-rich plasma on treatment of early intervertebral disc degeneration]. Hu X; Wang C; Rui Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Aug; 26(8):977-83. PubMed ID: 23012935 [TBL] [Abstract][Full Text] [Related]
7. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. Chuang SY; Popovich JM; Lin LC; Hedman TP Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899 [TBL] [Abstract][Full Text] [Related]
8. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy. Wang SZ; Rui YF; Tan Q; Wang C Arthritis Res Ther; 2013; 15(5):220. PubMed ID: 24165687 [TBL] [Abstract][Full Text] [Related]
9. Exogenous Crosslinking Restores Intradiscal Pressure of Injured Porcine Intervertebral Discs: An In Vivo Examination Using Quantitative Discomanometry. Lin HJ; Lin LC; Hedman TP; Chen WP; Chuang SY Spine (Phila Pa 1976); 2015 Oct; 40(20):1572-7. PubMed ID: 26731702 [TBL] [Abstract][Full Text] [Related]
11. Modeling changes in intervertebral disc mechanics with degeneration. Natarajan RN; Williams JR; Andersson GB J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():36-40. PubMed ID: 16595441 [TBL] [Abstract][Full Text] [Related]
12. Low Back Pain: A Biomechanical Rationale Based on "Patterns" of Disc Degeneration. Von Forell GA; Stephens TK; Samartzis D; Bowden AE Spine (Phila Pa 1976); 2015 Aug; 40(15):1165-72. PubMed ID: 25996532 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic denaturation versus excessive fatigue loading degeneration: Effects on the time-dependent response of the intervertebral disc. Nikkhoo M; Wang JL; Cheng CH; Parnianpour M; Khalaf K J Biomech; 2024 Jun; 171():112159. PubMed ID: 38852480 [TBL] [Abstract][Full Text] [Related]
14. [Finite element analysis on stress change of the lumbar disc degeneration]. Yan JZ; Wu ZH; Wang XS; Xing ZJ; Zhao Y; Zhang JG; Wang YP; Qiu GX Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Aug; 31(4):464-7. PubMed ID: 19771735 [TBL] [Abstract][Full Text] [Related]
15. What is the clinical evidence on regenerative medicine in intervertebral disc degeneration? Basso M; Cavagnaro L; Zanirato A; Divano S; Formica C; Formica M; Felli L Musculoskelet Surg; 2017 Aug; 101(2):93-104. PubMed ID: 28191592 [TBL] [Abstract][Full Text] [Related]
16. Intervertebral disc regeneration using platelet‑rich plasma‑containing bone marrow‑derived mesenchymal stem cells: A preliminary investigation. Wang SZ; Jin JY; Guo YD; Ma LY; Chang Q; Peng XG; Guo FF; Zhang HX; Hu XF; Wang C Mol Med Rep; 2016 Apr; 13(4):3475-81. PubMed ID: 26956080 [TBL] [Abstract][Full Text] [Related]
17. Is the sheep a suitable model to study the mechanical alterations of disc degeneration in humans? A probabilistic finite element model study. Bashkuev M; Reitmaier S; Schmidt H J Biomech; 2019 Feb; 84():172-182. PubMed ID: 30660378 [TBL] [Abstract][Full Text] [Related]
18. Progressive disc degeneration at C5-C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: A flexion-extension investigation using a poroelastic C3-T1 finite element model. Hussain M; Natarajan RN; An HS; Andersson GB Med Eng Phys; 2012 Jun; 34(5):552-8. PubMed ID: 21925919 [TBL] [Abstract][Full Text] [Related]
19. Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation. Fan R; Gong H; Qiu S; Zhang X; Fang J; Zhu D BMC Musculoskelet Disord; 2015 Aug; 16():221. PubMed ID: 26300114 [TBL] [Abstract][Full Text] [Related]
20. Optimization of protein crosslinking formulations for the treatment of degenerative disc disease. Slusarewicz P; Zhu K; Kirking B; Toungate J; Hedman T Spine (Phila Pa 1976); 2011 Jan; 36(1):E7-13. PubMed ID: 20595926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]