These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2801964)

  • 1. Osmotic forces driving water reabsorption in the proximal tubule of the rat kidney.
    Green R; Giebisch G
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F669-75. PubMed ID: 2801964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflection coefficients and water permeability in rat proximal tubule.
    Green R; Giebisch G
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F658-68. PubMed ID: 2801963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule.
    Green R; Giebisch G
    Am J Physiol; 1984 Feb; 246(2 Pt 2):F167-74. PubMed ID: 6696118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled water transport by rat proximal tubule.
    Green R; Giebisch G; Unwin R; Weinstein AM
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F1046-54. PubMed ID: 1750518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic requirements of proximal tubular fluid reabsorption flow dependence of fluid transport.
    Green R; Moriarty RJ; Giebisch G
    Kidney Int; 1981 Nov; 20(5):580-7. PubMed ID: 7343708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference between hypertonic NaCl and NaHCO3 as osmotic diuretics in dog kidneys.
    Ostensen J; Stokke ES; Bugge JF; Langberg H; Kiil F
    Acta Physiol Scand; 1989 Oct; 137(2):177-87. PubMed ID: 2618758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.
    Chan YL; Malnic G; Giebisch G
    Am J Physiol; 1983 Nov; 245(5 Pt 1):F622-33. PubMed ID: 6638182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys.
    Kiil F
    Acta Physiol Scand; 2002 May; 175(1):71-83. PubMed ID: 11982506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule.
    Brenner BM; Falchuk KH; Keimowitz RI; Berliner RW
    J Clin Invest; 1969 Aug; 48(8):1519-31. PubMed ID: 5796362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat.
    Wilson RW; Wareing M; Green R
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):155-64. PubMed ID: 9097940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial heterogeneity in the rat proximal convoluted tubule. II. Osmolality and osmotic water permeability.
    Liu FY; Cogan MG; Rector FC
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F822-6. PubMed ID: 6496748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.
    Andreoli TE; Schafer JA
    Am J Physiol; 1979 Feb; 236(2):F89-96. PubMed ID: 369393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study in vivo of peritubular oncotic pressure and proximal tubular reabsorption in the rat.
    Conger JD; Bartoli E; Earley LE
    Clin Sci Mol Med; 1976 Oct; 51(4):379-92. PubMed ID: 971578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of medium tonicity on transepithelial H(+)-HCO3-fluxes in rat proximal tubule.
    Melis MS; Malnic G; Aires MM
    J Physiol; 1993 Jun; 465():9-20. PubMed ID: 8229863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peritubular capillary control of proximal tubule reabsorption in the rat.
    Quinn MD; Marsh DJ
    Am J Physiol; 1979 May; 236(5):F478-87. PubMed ID: 375749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of peritubular hypertonicity on water and urea transport of inner medullary collecting duct.
    Kudo LH; César KR; Ping WC; Rocha AS
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F338-47. PubMed ID: 1313642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive potassium transport in the proximal convoluted tubule.
    Kaufman JS; Hamburger RJ
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F228-32. PubMed ID: 3970212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of proximal tubule fluid reabsorption after exposure of the rat kidney to the physical effects of expansion of extracellular fluid volume.
    Ichikawa I; Brenner BM
    J Clin Invest; 1979 Nov; 64(5):1466-74. PubMed ID: 500820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glomerular tubular balance: mediation by luminal hypotonicity.
    Häberle DA; Müller U; Nagel W
    Miner Electrolyte Metab; 1989; 15(3):108-13. PubMed ID: 2725432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water absorption in the proximal tubule: effect of bicarbonate, chloride gradient, and organic solutes.
    Sansom SC; Senekjian HO; Knight TF; Frommer P; Weinman EJ
    Proc Soc Exp Biol Med; 1983 Jan; 172(1):111-7. PubMed ID: 6828448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.