BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2801996)

  • 1. Active chloride transport in isolated posterior midgut of tobacco hornworm (Manduca sexta).
    Chao AC; Koch AR; Moffett DF
    Am J Physiol; 1989 Oct; 257(4 Pt 2):R752-61. PubMed ID: 2801996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-current relation and K+ transport in tobacco hornworm (Manduca sexta) midgut.
    Moffett DF
    J Membr Biol; 1980 Jun; 54(3):213-9. PubMed ID: 7392045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ current stimulation by Cl- in the midgut epithelium of tobacco hornworm (Manduca sexta). I. Kinetics and effect of Cl(-)-site-specific agents.
    Zeiske W; Schröder H; Alpert G
    J Comp Physiol B; 1992; 162(4):331-9. PubMed ID: 1324259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride transport in rabbit esophageal epithelial cells.
    Abdulnour-Nakhoul S; Nakhoul NL; Caymaz-Bor C; Orlando RC
    Am J Physiol Gastrointest Liver Physiol; 2002 Apr; 282(4):G663-75. PubMed ID: 11897626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray microanalysis of elements in frozen-hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro.
    Dow JA; Gupta BL; Hall TA; Harvey WR
    J Membr Biol; 1984; 77(3):223-41. PubMed ID: 6699905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of inhibition of active chloride transport in the frog cornea by furosemide.
    Patarca R; Candia OA; Reinach PS
    Am J Physiol; 1983 Dec; 245(6):F660-9. PubMed ID: 6606983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut.
    Boudko DY; Moroz LL; Harvey WR; Linser PJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15354-9. PubMed ID: 11742083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ current stimulation by Cl- in the midgut epithelium of tobacco hornworm (Manduca sexta). II. Analysis of Ba(2+)-induced K+ channel conduction noise.
    Zeiske W; Marin H
    J Comp Physiol B; 1992; 162(4):340-4. PubMed ID: 1506490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular mechanism of HCO-3 and Cl- transport in insect salt gland.
    Strange K; Phillips JE
    J Membr Biol; 1985; 83(1-2):25-37. PubMed ID: 3999119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro.
    Gupta BL; Dow JA; Hall TA; Harvey WR
    J Cell Sci; 1985 Mar; 74():137-52. PubMed ID: 2411741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basolateral membrane chloride transport in isolated epithelia of frog skin.
    Stoddard JS; Jakobsson E; Helman SI
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C318-29. PubMed ID: 3876032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin.
    Harvey WR; Wolfersberger MG
    J Exp Biol; 1979 Dec; 83():293-304. PubMed ID: 43881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular Na+, K+ and Cl- activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide.
    Coast GM
    J Exp Biol; 2012 Aug; 215(Pt 16):2774-85. PubMed ID: 22837449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport.
    Cioffi M
    Tissue Cell; 1979; 11(3):467-79. PubMed ID: 494237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and control of salt absorption in locust rectum.
    Hanrahan J; Phillips JE
    Am J Physiol; 1983 Feb; 244(2):R131-42. PubMed ID: 6824100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of distal tubular chloride transport in Amphiuma kidney.
    Oberleithner H; Guggino W; Giebisch G
    Am J Physiol; 1982 Apr; 242(4):F331-9. PubMed ID: 7065243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of K+ and Cl- conductances in chloride secretion by the opercular epithelium.
    Degnan KJ
    J Exp Zool; 1985 Oct; 236(1):19-25. PubMed ID: 4056703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloride transport across the integumentary epithelium of Manduca sexta (Lepidoptera: Sphingidae).
    Cooper PD; Jungreis AM
    J Comp Physiol B; 1985; 155(6):743-50. PubMed ID: 3837038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium.
    Reuss L; Reinach P; Weinman SA; Grady TP
    Am J Physiol; 1983 May; 244(5):C336-47. PubMed ID: 6601915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.