These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination. Wang X; Cao F; Yan M; Liu Y; Zhu X; Sun H; Ma G Acta Biomater; 2019 Jan; 83():390-399. PubMed ID: 30448435 [TBL] [Abstract][Full Text] [Related]
3. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination. Ahrends T; Bąbała N; Xiao Y; Yagita H; van Eenennaam H; Borst J Cancer Res; 2016 May; 76(10):2921-31. PubMed ID: 27020860 [TBL] [Abstract][Full Text] [Related]
4. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Davila E; Kennedy R; Celis E Cancer Res; 2003 Jun; 63(12):3281-8. PubMed ID: 12810660 [TBL] [Abstract][Full Text] [Related]
5. The present status and future prospects of peptide-based cancer vaccines. Hirayama M; Nishimura Y Int Immunol; 2016 Jul; 28(7):319-28. PubMed ID: 27235694 [TBL] [Abstract][Full Text] [Related]
6. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Iwama T; Uchida T; Sawada Y; Tsuchiya N; Sugai S; Fujinami N; Shimomura M; Yoshikawa T; Zhang R; Uemura Y; Nakatsura T Biochem Biophys Res Commun; 2016 Jan; 469(1):138-143. PubMed ID: 26616051 [TBL] [Abstract][Full Text] [Related]
7. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Haabeth OAW; Blake TR; McKinlay CJ; Waymouth RM; Wender PA; Levy R Proc Natl Acad Sci U S A; 2018 Sep; 115(39):E9153-E9161. PubMed ID: 30201728 [TBL] [Abstract][Full Text] [Related]
8. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Ojima T; Iwahashi M; Nakamura M; Matsuda K; Naka T; Nakamori M; Ueda K; Ishida K; Yamaue H Int J Oncol; 2006 Apr; 28(4):947-53. PubMed ID: 16525645 [TBL] [Abstract][Full Text] [Related]
9. Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Saha A; Chatterjee SK; Foon KA; Celis E; Bhattacharya-Chatterjee M Cancer Res; 2007 Mar; 67(6):2881-92. PubMed ID: 17363612 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy. Song H; Su Q; Nie Y; Zhang C; Huang P; Shi S; Liu Q; Wang W Acta Biomater; 2023 Mar; 158():535-546. PubMed ID: 36632876 [TBL] [Abstract][Full Text] [Related]
11. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy. Masuko K; Wakita D; Togashi Y; Kita T; Kitamura H; Nishimura T Immunol Lett; 2015 Jan; 163(1):102-12. PubMed ID: 25479286 [TBL] [Abstract][Full Text] [Related]
12. Subcutaneous Nanodisc Vaccination with Neoantigens for Combination Cancer Immunotherapy. Kuai R; Sun X; Yuan W; Xu Y; Schwendeman A; Moon JJ Bioconjug Chem; 2018 Mar; 29(3):771-775. PubMed ID: 29485848 [TBL] [Abstract][Full Text] [Related]
13. Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. Muraoka D; Kato T; Wang L; Maeda Y; Noguchi T; Harada N; Takeda K; Yagita H; Guillaume P; Luescher I; Old LJ; Shiku H; Nishikawa H J Immunol; 2010 Sep; 185(6):3768-76. PubMed ID: 20733202 [TBL] [Abstract][Full Text] [Related]
14. A STING-activating nanovaccine for cancer immunotherapy. Luo M; Wang H; Wang Z; Cai H; Lu Z; Li Y; Du M; Huang G; Wang C; Chen X; Porembka MR; Lea J; Frankel AE; Fu YX; Chen ZJ; Gao J Nat Nanotechnol; 2017 Jul; 12(7):648-654. PubMed ID: 28436963 [TBL] [Abstract][Full Text] [Related]
15. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Zhang LX; Xie XX; Liu DQ; Xu ZP; Liu RT Biomaterials; 2018 Aug; 174():54-66. PubMed ID: 29778982 [TBL] [Abstract][Full Text] [Related]
16. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Zhu G; Mei L; Vishwasrao HD; Jacobson O; Wang Z; Liu Y; Yung BC; Fu X; Jin A; Niu G; Wang Q; Zhang F; Shroff H; Chen X Nat Commun; 2017 Nov; 8(1):1482. PubMed ID: 29133898 [TBL] [Abstract][Full Text] [Related]
17. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085 [TBL] [Abstract][Full Text] [Related]
18. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. Yang X; Fan J; Wu Y; Ma Z; Huang J; Zhang Y; Zhou Z; Mo F; Liu X; Yuan H; Xu Y; Pan L; Chen S Nanomedicine; 2021 Oct; 37():102443. PubMed ID: 34303839 [TBL] [Abstract][Full Text] [Related]
19. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. Takeda Y; Azuma M; Matsumoto M; Seya T J Exp Clin Cancer Res; 2016 Sep; 35(1):143. PubMed ID: 27619885 [TBL] [Abstract][Full Text] [Related]