These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
979 related articles for article (PubMed ID: 28024243)
21. To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques. Chakraborty M; Paul S; Mitra I; Bardhan M; Bose M; Saha A; Ganguly T J Photochem Photobiol B; 2018 Jan; 178():355-366. PubMed ID: 29182925 [TBL] [Abstract][Full Text] [Related]
22. Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Liu S; Haller E; Horak J; Brandstetter M; Heuser T; Lämmerhofer M Talanta; 2019 Mar; 194():664-672. PubMed ID: 30609588 [TBL] [Abstract][Full Text] [Related]
23. The interaction between casein micelles and gold nanoparticles. Liu Y; Guo R J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073 [TBL] [Abstract][Full Text] [Related]
24. Binding of a cyclic organoselenium compound with gold nanoparticles (GNP) and its effect on electron transfer properties. Kumar PV; Singh BG; Maiti N; Iwaoka M; Priyadarsini KI J Colloid Interface Sci; 2014 Dec; 436():179-85. PubMed ID: 25268822 [TBL] [Abstract][Full Text] [Related]
25. Hyper-Rayleigh scattering from gold nanoparticles: effect of size and shape. Das K; Uppal A; Saini RK; Varshney GK; Mondal P; Gupta PK Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():398-402. PubMed ID: 24682054 [TBL] [Abstract][Full Text] [Related]
26. Exploring the DNA damaging potential of chitosan and citrate-reduced gold nanoparticles: Physicochemical approach. Sonia ; Komal ; Kukreti S; Kaushik M Int J Biol Macromol; 2018 Aug; 115():801-810. PubMed ID: 29698763 [TBL] [Abstract][Full Text] [Related]
27. Unexpected Hard Protein Behavior of BSA on Gold Nanoparticle Caused by Resveratrol. Coglitore D; Giamblanco N; Kizalaité A; Coulon PE; Charlot B; Janot JM; Balme S Langmuir; 2018 Jul; 34(30):8866-8874. PubMed ID: 30001624 [TBL] [Abstract][Full Text] [Related]
28. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427 [TBL] [Abstract][Full Text] [Related]
29. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Chen M; Cai HH; Yang F; Lin D; Yang PH; Cai J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():776-81. PubMed ID: 24144831 [TBL] [Abstract][Full Text] [Related]
30. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Jans H; Liu X; Austin L; Maes G; Huo Q Anal Chem; 2009 Nov; 81(22):9425-32. PubMed ID: 19803497 [TBL] [Abstract][Full Text] [Related]
31. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. Del Caño R; Mateus L; Sánchez-Obrero G; Sevilla JM; Madueño R; Blázquez M; Pineda T J Colloid Interface Sci; 2017 Nov; 505():1165-1171. PubMed ID: 28715860 [TBL] [Abstract][Full Text] [Related]
32. A method of measuring gold nanoparticle concentrations by X-ray fluorescence for biomedical applications. Wu D; Li Y; Wong MD; Liu H Med Phys; 2013 May; 40(5):051901. PubMed ID: 23635271 [TBL] [Abstract][Full Text] [Related]
33. Monomer adsorption of indocyanine green to gold nanoparticles. Guerrini L; Hartsuiker L; Manohar S; Otto C Nanoscale; 2011 Oct; 3(10):4247-53. PubMed ID: 21897980 [TBL] [Abstract][Full Text] [Related]
35. Gold nanoparticle-fluorophore complex for conditionally fluorescing signal mediator. Wang J; Achilefu S; Nantz M; Kang KA Anal Chim Acta; 2011 Jun; 695(1-2):96-104. PubMed ID: 21601036 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamics of multilayer protein adsorption on a gold nanoparticle surface. Mishra A; Das PK Phys Chem Chem Phys; 2022 Sep; 24(37):22464-22476. PubMed ID: 36106502 [TBL] [Abstract][Full Text] [Related]
37. Optical extinction and scattering cross sections of plasmonic nanoparticle dimers in aqueous suspension. Loumaigne M; Midelet C; Doussineau T; Dugourd P; Antoine R; Stamboul M; Débarre A; Werts MH Nanoscale; 2016 Mar; 8(12):6555-70. PubMed ID: 26935710 [TBL] [Abstract][Full Text] [Related]
38. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS). Priyadarshini E; Pradhan N; Panda PK; Mishra BK Biosens Bioelectron; 2015 Jun; 68():598-603. PubMed ID: 25643600 [TBL] [Abstract][Full Text] [Related]
39. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy. Gary R; Carbone G; Petriashvili G; De Santo MP; Barberi R Sensors (Basel); 2016 Feb; 16(2):258. PubMed ID: 26907286 [TBL] [Abstract][Full Text] [Related]
40. Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation. Zhang X; Wang H; Coulter JA; Yang R Int J Nanomedicine; 2018; 13():3541-3552. PubMed ID: 29950834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]