These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 28024325)

  • 61. High Lithium Storage Capacity and Long Cycling Life Fe
    Zhang YJ; Qu J; Hao SM; Chang W; Ji QY; Yu ZZ
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41878-41886. PubMed ID: 29125283
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ferrocene as a Novel Additive to Enhance the Lithium-Ion Storage Capability of SnO
    Zhang S; Liang B; Fan Y; Wang J; Liang X; Huang H; Huang D; Zhou W; Guo J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31943-31953. PubMed ID: 31407886
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Monodispersed Carbon-Coated Cubic NiP
    Lou P; Cui Z; Jia Z; Sun J; Tan Y; Guo X
    ACS Nano; 2017 Apr; 11(4):3705-3715. PubMed ID: 28323408
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Agaric-like anodes of porous carbon decorated with MoO
    Hou C; Yang W; Xie X; Sun X; Wang J; Naik N; Pan D; Mai X; Guo Z; Dang F; Du W
    J Colloid Interface Sci; 2021 Aug; 596():396-407. PubMed ID: 33848745
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes.
    Yu SH; Lee DJ; Park M; Kwon SG; Lee HS; Jin A; Lee KS; Lee JE; Oh MH; Kang K; Sung YE; Hyeon T
    J Am Chem Soc; 2015 Sep; 137(37):11954-61. PubMed ID: 26329036
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Highly stable SnO
    Choi J; Kim WS; Hong SH
    Nanoscale; 2018 Mar; 10(9):4370-4376. PubMed ID: 29446430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes.
    Wang W; Ruiz I; Ahmed K; Bay HH; George AS; Wang J; Butler J; Ozkan M; Ozkan CS
    Small; 2014 Aug; 10(16):3389-96. PubMed ID: 24753292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.
    Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B
    Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848
    [TBL] [Abstract][Full Text] [Related]  

  • 70. General Strategy for Integrated SnO
    Bai J; Xi B; Feng Z; Zhang J; Feng J; Xiong S
    ACS Omega; 2017 Oct; 2(10):6415-6423. PubMed ID: 31457244
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.
    Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monodisperse porous silicon spheres as anode materials for lithium ion batteries.
    Wang W; Favors Z; Ionescu R; Ye R; Bay HH; Ozkan M; Ozkan CS
    Sci Rep; 2015 Mar; 5():8781. PubMed ID: 25740298
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.
    Zhu J; Wang T; Fan F; Mei L; Lu B
    ACS Nano; 2016 Sep; 10(9):8243-51. PubMed ID: 27462725
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrostatic Self-assembly of 0D-2D SnO
    Liu H; Zhang X; Zhu Y; Cao B; Zhu Q; Zhang P; Xu B; Wu F; Chen R
    Nanomicro Lett; 2019 Aug; 11(1):65. PubMed ID: 34138001
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TiO
    Weng Y; Zhang Z; Zhang H; Zhou Y; Zhao X; Xu X
    Front Chem; 2021; 9():660309. PubMed ID: 34957042
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inward lithium-ion breathing of hierarchically porous silicon anodes.
    Xiao Q; Gu M; Yang H; Li B; Zhang C; Liu Y; Liu F; Dai F; Yang L; Liu Z; Xiao X; Liu G; Zhao P; Zhang S; Wang C; Lu Y; Cai M
    Nat Commun; 2015 Nov; 6():8844. PubMed ID: 26538181
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bouquet-Like Mn
    Rehman WU; Xu Y; Sun X; Ullah I; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2018 May; 10(21):17963-17972. PubMed ID: 29737833
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One Step Synthesis of Uniform SnO
    Wei H; Xia Z; Xia D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7169-7176. PubMed ID: 28165220
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Self-Volatilization Approach to Mesoporous Carbon Nanotube/Silver Nanoparticle Hybrids: The Role of Silver in Boosting Li Ion Storage.
    Jiang H; Zhang H; Fu Y; Guo S; Hu Y; Zhang L; Liu Y; Liu H; Li C
    ACS Nano; 2016 Jan; 10(1):1648-54. PubMed ID: 26691283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.