These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 28024348)
1. Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. Zhou J; Xiong Q; Ma J; Ren J; Messersmith PB; Chen P; Duan H ACS Nano; 2016 Dec; 10(12):11066-11075. PubMed ID: 28024348 [TBL] [Abstract][Full Text] [Related]
2. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
4. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755 [TBL] [Abstract][Full Text] [Related]
5. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
6. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563 [TBL] [Abstract][Full Text] [Related]
7. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. Song J; Huang P; Duan H; Chen X Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093 [TBL] [Abstract][Full Text] [Related]
9. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Kumar S; Kumar A; Kim GH; Rhim WK; Hartman KL; Nam JM Small; 2017 Nov; 13(43):. PubMed ID: 28902980 [TBL] [Abstract][Full Text] [Related]
10. Versatile Core-Shell Nanoparticle@Metal-Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. Zhou J; Wang P; Wang C; Goh YT; Fang Z; Messersmith PB; Duan H ACS Nano; 2015 Jul; 9(7):6951-60. PubMed ID: 26061627 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989 [TBL] [Abstract][Full Text] [Related]
12. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Li R; Hu Y; Sun X; Zhang Z; Chen K; Liu Q; Chen X Talanta; 2024 Jun; 273():125899. PubMed ID: 38484502 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of biosensing surfaces using adhesive polydopamine. Chu H; Yen CW; Hayden SC Biotechnol Prog; 2015; 31(1):299-306. PubMed ID: 25219782 [TBL] [Abstract][Full Text] [Related]
14. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles. Ertsgaard CT; Wittenberg NJ; Klemme DJ; Barik A; Shih WC; Oh SH Nano Lett; 2018 Sep; 18(9):5946-5953. PubMed ID: 30071732 [TBL] [Abstract][Full Text] [Related]
15. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. Oh JW; Lim DK; Kim GH; Suh YD; Nam JM J Am Chem Soc; 2014 Oct; 136(40):14052-9. PubMed ID: 25198151 [TBL] [Abstract][Full Text] [Related]
16. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. Yang W; Lim DK Adv Mater; 2020 Dec; 32(51):e2002219. PubMed ID: 33063429 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Sun C; Gao M; Zhang X Anal Bioanal Chem; 2017 Aug; 409(20):4915-4926. PubMed ID: 28585085 [TBL] [Abstract][Full Text] [Related]
18. Terminal deoxynucleotidyl transferase (TdT)-catalyzed homo-nucleotides-constituted ssDNA: Inducing tunable-size nanogap for core-shell plasmonic metal nanostructure and acting as Raman reporters for detection of Escherichia coli O157:H7. Zhou Y; Fang W; Lai K; Zhu Y; Bian X; Shen J; Li Q; Wang L; Zhang W; Yan J Biosens Bioelectron; 2019 Sep; 141():111419. PubMed ID: 31203177 [TBL] [Abstract][Full Text] [Related]
20. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. Rong Z; Xiao R; Wang C; Wang D; Wang S Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]