These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 28024379)

  • 21. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.
    Xiao TH; Cheng Z; Goda K
    Nanotechnology; 2017 Jun; 28(24):245201. PubMed ID: 28471747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Absorption with Graphene-Coated Silicon Carbide Nanowires for Mid-Infrared Nanophotonics.
    Rufangura P; Khodasevych I; Agrawal A; Bosi M; Folland TG; Caldwell JD; Iacopi F
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene Coated Dielectric Hierarchical Nanostructures for Highly Sensitive Broadband Infrared Sensing.
    Xia-Hou YJ; Yu Y; Zheng JR; Yi J; Zhou J; Qin TX; You EM; Chen HL; Ding SY; Zhang L; Chang KL; Chen K; Moskovits M; Tian ZQ
    Small; 2023 Feb; 19(8):e2206167. PubMed ID: 36504426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomechanical electro-optical modulator based on atomic heterostructures.
    Thomas PA; Marshall OP; Rodriguez FJ; Auton GH; Kravets VG; Kundys D; Su Y; Grigorenko AN
    Nat Commun; 2016 Nov; 7():13590. PubMed ID: 27874003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetic Enhancement of Graphene Raman Spectroscopy by Ordered and Size-Tunable Au Nanostructures.
    Zhang S; Zhang X; Liu X
    Nanoscale Res Lett; 2015 Dec; 10(1):390. PubMed ID: 26439619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coexistence of two graphene-induced modulation effects on surface plasmons in hybrid graphene plasmonic nanostructures.
    Zhang ZY; Li DM; Zhang H; Wang W; Zhu YH; Zhang S; Zhang XP; Yi JM
    Opt Express; 2019 Apr; 27(9):13503-13515. PubMed ID: 31052871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Edge-reflection phase directed plasmonic resonances on graphene nano-structures.
    Du L; Tang D; Yuan X
    Opt Express; 2014 Sep; 22(19):22689-98. PubMed ID: 25321738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range.
    González-Campuzano R; Saniger JM; Mendoza D
    Nanotechnology; 2017 Nov; 28(46):465704. PubMed ID: 28914231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.
    Liu Z; Aydin K
    Nano Lett; 2016 Jun; 16(6):3457-62. PubMed ID: 27152653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector.
    Goldflam MD; Fei Z; Ruiz I; Howell SW; Davids PS; Peters DW; Beechem TE
    Opt Express; 2017 May; 25(11):12400-12408. PubMed ID: 28786595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
    Rodrigo D; Limaj O; Janner D; Etezadi D; García de Abajo FJ; Pruneri V; Altug H
    Science; 2015 Jul; 349(6244):165-8. PubMed ID: 26160941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength.
    Guo J; Jiang L; Dai X; Xiang Y
    Opt Express; 2016 Mar; 24(5):4740-4748. PubMed ID: 29092303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection.
    Yu X; Li Y; Hu X; Zhang D; Tao Y; Liu Z; He Y; Haque MA; Liu Z; Wu T; Wang QJ
    Nat Commun; 2018 Oct; 9(1):4299. PubMed ID: 30327474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable and Tunable Periodic Graphene Nanohole Arrays for Mid-Infrared Plasmonics.
    Gopalan KK; Paulillo B; Mackenzie DMA; Rodrigo D; Bareza N; Whelan PR; Shivayogimath A; Pruneri V
    Nano Lett; 2018 Sep; 18(9):5913-5918. PubMed ID: 30114919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronically Tunable Perfect Absorption in Graphene.
    Kim S; Jang MS; Brar VW; Mauser KW; Kim L; Atwater HA
    Nano Lett; 2018 Feb; 18(2):971-979. PubMed ID: 29320203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.