These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 28024385)
1. Controlling Stiction in Nano-Electro-Mechanical Systems Using Liquid Crystals. Buchnev O; Podoliak N; Frank T; Kaczmarek M; Jiang L; Fedotov VA ACS Nano; 2016 Dec; 10(12):11519-11524. PubMed ID: 28024385 [TBL] [Abstract][Full Text] [Related]
2. 3D heterostructures and systems for novel MEMS/NEMS. Yakovlevich Prinz V; Alexandrovich Seleznev V; Victorovich Prinz A; Vladimirovich Kopylov A Sci Technol Adv Mater; 2009 Jun; 10(3):034502. PubMed ID: 27877295 [TBL] [Abstract][Full Text] [Related]
3. Anti-stiction coating for mechanically tunable photonic crystal devices. Petruzzella M; Zobenica Ž; Cotrufo M; Zardetto V; Mameli A; Pagliano F; Koelling S; van Otten FWM; Roozeboom F; Kessels WMM; van der Heijden RW; Fiore A Opt Express; 2018 Feb; 26(4):3882-3891. PubMed ID: 29475245 [TBL] [Abstract][Full Text] [Related]
4. Nano-electromechanical Switch Based on a Physical Unclonable Function for Highly Robust and Stable Performance in Harsh Environments. Hwang KM; Park JY; Bae H; Lee SW; Kim CK; Seo M; Im H; Kim DH; Kim SY; Lee GB; Choi YK ACS Nano; 2017 Dec; 11(12):12547-12552. PubMed ID: 29235347 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and electrical characterization of graphene formed chemically on nickel nano electro mechanical system (NEMS) switch. Choe BI; Lee JK; Lee B; Kim K; Choi WY; Hong BH; Lee JH J Nanosci Nanotechnol; 2014 Dec; 14(12):9418-24. PubMed ID: 25971076 [TBL] [Abstract][Full Text] [Related]
6. Optical and surface energy probe of Hamaker constant in copper oxide thin films for NEMS and MEMS stiction control applications. Ogwu A; Darma TH Sci Rep; 2021 Feb; 11(1):4276. PubMed ID: 33608614 [TBL] [Abstract][Full Text] [Related]
7. Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches. Yang R; Qian J; Feng PX Small; 2020 Dec; 16(51):e2005594. PubMed ID: 33236527 [TBL] [Abstract][Full Text] [Related]
8. Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators. Du H; Chau FS; Zhou G Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407442 [TBL] [Abstract][Full Text] [Related]
10. Nanotribology and nanomechanics in nano/biotechnology. Bhushan B Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1499-537. PubMed ID: 18192166 [TBL] [Abstract][Full Text] [Related]
11. Experiments on MEMS Integration in 0.25 μm CMOS Process. Michalik P; Fernández D; Wietstruck M; Kaynak M; Madrenas J Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966375 [TBL] [Abstract][Full Text] [Related]
12. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Buchnev O; Ou JY; Kaczmarek M; Zheludev NI; Fedotov VA Opt Express; 2013 Jan; 21(2):1633-8. PubMed ID: 23389148 [TBL] [Abstract][Full Text] [Related]
13. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform. Dash A; Selvaraja SK; Naik AK Opt Lett; 2018 Feb; 43(4):659-662. PubMed ID: 29444046 [TBL] [Abstract][Full Text] [Related]
14. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Han Z; Kohno K; Fujita H; Hirakawa K; Toshiyoshi H Opt Express; 2014 Sep; 22(18):21326-39. PubMed ID: 25321511 [TBL] [Abstract][Full Text] [Related]
15. Advanced lithography simulation for various 3-dimensional nano/microstructuring fabrications in positive- and negative-tone photoresists. Kim SK; Oh HK; Jung YD; An I J Nanosci Nanotechnol; 2011 Jan; 11(1):528-32. PubMed ID: 21446490 [TBL] [Abstract][Full Text] [Related]
16. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. Kang B; Woo JH; Choi E; Lee HH; Kim ES; Kim J; Hwang TJ; Park YS; Kim DH; Wu JW Opt Express; 2010 Aug; 18(16):16492-8. PubMed ID: 20721037 [TBL] [Abstract][Full Text] [Related]
17. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films. Niroui F; Wang AI; Sletten EM; Song Y; Kong J; Yablonovitch E; Swager TM; Lang JH; Bulović V ACS Nano; 2015 Aug; 9(8):7886-94. PubMed ID: 26244821 [TBL] [Abstract][Full Text] [Related]
18. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Ou JY; Plum E; Zhang J; Zheludev NI Nat Nanotechnol; 2013 Apr; 8(4):252-5. PubMed ID: 23503091 [TBL] [Abstract][Full Text] [Related]
19. Bistable metamaterial for switching and cascading elastic vibrations. Bilal OR; Foehr A; Daraio C Proc Natl Acad Sci U S A; 2017 May; 114(18):4603-4606. PubMed ID: 28416663 [TBL] [Abstract][Full Text] [Related]
20. All-optical switching of liquid crystals at terahertz frequencies enabled by metamaterials. Beddoes B; Perivolari E; Kaczmarek M; Apostolopoulos V; Fedotov VA Opt Express; 2023 May; 31(11):18336-18345. PubMed ID: 37381546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]