BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28024538)

  • 1. Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods.
    Caliari ÍP; Barbosa MH; Ferreira SO; Teófilo RF
    Carbohydr Polym; 2017 Feb; 158():20-28. PubMed ID: 28024538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS).
    Assis C; Ramos RS; Silva LA; Kist V; Barbosa MHP; Teófilo RF
    Appl Spectrosc; 2017 Aug; 71(8):2001-2012. PubMed ID: 28452227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy].
    Jiang ZH; Fei BH; Yang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones.
    Purcell DE; O'Shea MG; Johnson RA; Kokot S
    Appl Spectrosc; 2009 Apr; 63(4):450-7. PubMed ID: 19366512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Determination of crystallinity in Neosinocalamus affinins based on near infrared spectroscopy and PLS methods].
    Sun BL; Liu JL; Cai YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):366-70. PubMed ID: 21510382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse.
    Hashmi M; Sun Q; Tao J; Wells T; Shah AA; Labbé N; Ragauskas AJ
    Bioresour Technol; 2017 Jan; 224():714-720. PubMed ID: 27864135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy.
    Li X; Sun C; Zhou B; He Y
    Sci Rep; 2015 Nov; 5():17210. PubMed ID: 26601657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy].
    Li XN; Fan XF; Wu JY; Zhang GF; Liu SY; Wu MJ; Cheng YB; Zhang N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):64-9. PubMed ID: 27228742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.
    Agarwal UP; Reiner RR; Ralph SA
    J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol.
    Sindhu R; Binod P; Satyanagalakshmi K; Janu KU; Sajna KV; Kurien N; Sukumaran RK; Pandey A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2313-23. PubMed ID: 20526821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis.
    Jin X; Chen X; Shi C; Li M; Guan Y; Yu CY; Yamada T; Sacks EJ; Peng J
    Bioresour Technol; 2017 Oct; 241():603-609. PubMed ID: 28601778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing energy cane cell wall digestibility screening by near-infrared spectroscopy.
    Chong BF; O'Shea MG
    Appl Spectrosc; 2013 Oct; 67(10):1160-4. PubMed ID: 24067572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis.
    Zidan AS; Rahman Z; Sayeed V; Raw A; Yu L; Khan MA
    Int J Pharm; 2012 Feb; 423(2):341-50. PubMed ID: 22100517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin.
    Du FL; Du QS; Dai J; Tang PD; Li YM; Long SY; Xie NZ; Wang QY; Huang RB
    PLoS One; 2018; 13(6):e0197188. PubMed ID: 29856735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early prediction of sugarcane genotypes susceptible and resistant to Diatraea saccharalis using spectroscopies and classification techniques.
    Porto NA; Roque JV; Wartha CA; Cardoso W; Peternelli LA; Barbosa MHP; Teófilo RF
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():69-75. PubMed ID: 30954799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.
    Zhang H; Wu S
    Bioresour Technol; 2014 Apr; 158():161-5. PubMed ID: 24603488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional changes in sugarcane bagasse on low temperature, long-term diluted ammonia treatment.
    Kim M; Aita G; Day DF
    Appl Biochem Biotechnol; 2010 May; 161(1-8):34-40. PubMed ID: 19916000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy.
    Fukui Y; Otsuka M
    Drug Dev Ind Pharm; 2010 Jan; 36(1):72-80. PubMed ID: 19656006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse.
    Qiu Z; Aita GM; Walker MS
    Bioresour Technol; 2012 Aug; 117():251-6. PubMed ID: 22617034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.