BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28024607)

  • 1. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.
    Hoque ME
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():433-443. PubMed ID: 28024607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering.
    Hoque ME; Hutmacher DW; Feng W; Li S; Huang MH; Vert M; Wong YS
    J Biomater Sci Polym Ed; 2005; 16(12):1595-610. PubMed ID: 16366339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties.
    Ferreira J; Gloria A; Cometa S; Coelho JFJ; Domingos M
    J Appl Biomater Funct Mater; 2017 Jul; 15(3):e185-e195. PubMed ID: 28623631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N; Karkhaneh A; Daliri Joupari M
    J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB; Rivero IV
    J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.
    Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F
    Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fused deposition modeling of novel scaffold architectures for tissue engineering applications.
    Zein I; Hutmacher DW; Tan KC; Teoh SH
    Biomaterials; 2002 Feb; 23(4):1169-85. PubMed ID: 11791921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds.
    Klouda L; Vaz CM; Mol A; Baaijens FP; Bouten CV
    J Mater Sci Mater Med; 2008 Mar; 19(3):1137-44. PubMed ID: 17701317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation Behavior of 3D Porous Polydioxanone-b-Polycaprolactone Scaffolds Fabricated Using the Melt-Molding Particulate-Leaching Method.
    Oh SH; Park SC; Kim HK; Koh YJ; Lee JH; Lee MC; Lee JH
    J Biomater Sci Polym Ed; 2011; 22(1-3):225-37. PubMed ID: 20557697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.