BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28024624)

  • 1. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique.
    Ozeki K; Masuzawa T; Aoki H
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():576-582. PubMed ID: 28024624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.
    Ozeki K; Aoki H; Masuzawa T
    Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(5):1793-802. PubMed ID: 25201393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing and evaluation of bioactive coatings on polymeric implants.
    Rabiei A; Sandukas S
    J Biomed Mater Res A; 2013 Sep; 101(9):2621-9. PubMed ID: 23412996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment.
    Ozeki K; Mishima A; Yuhta T; Fukui Y; Aoki H
    Biomed Mater Eng; 2003; 13(4):451-63. PubMed ID: 14646059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment.
    Ozeki K; Aoki H; Fukui Y
    J Biomed Mater Res A; 2006 Mar; 76(3):605-13. PubMed ID: 16278871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(2):1447-56. PubMed ID: 24642972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2015; 26(3-4):139-47. PubMed ID: 26684886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate.
    Yang Y; Ong JL
    J Biomed Mater Res A; 2003 Mar; 64(3):509-16. PubMed ID: 12579565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate.
    Nelea V; Morosanu C; Bercu M; Mihailescu IN
    J Mater Sci Mater Med; 2007 Dec; 18(12):2347-54. PubMed ID: 17569010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite.
    Deng Y; Zhou P; Liu X; Wang L; Xiong X; Tang Z; Wei J; Wei S
    Colloids Surf B Biointerfaces; 2015 Dec; 136():64-73. PubMed ID: 26363268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance.
    Sak A; Moskalewicz T; Zimowski S; Cieniek Ł; Dubiel B; Radziszewska A; Kot M; Łukaszczyk A
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():52-61. PubMed ID: 27040195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates.
    Blind O; Klein LH; Dailey B; Jordan L
    Dent Mater; 2005 Nov; 21(11):1017-24. PubMed ID: 15882899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation.
    Nakahara I; Takao M; Goto T; Ohtsuki C; Hibino S; Sugano N
    J Orthop Res; 2012 Oct; 30(10):1618-25. PubMed ID: 22467537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film.
    Yang YJ; Tsou HK; Chen YH; Chung CJ; He JL
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():58-66. PubMed ID: 26354240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites.
    Ma R; Li Q; Wang L; Zhang X; Fang L; Luo Z; Xue B; Ma L
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():429-439. PubMed ID: 28183629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites.
    Yu S; Hariram KP; Kumar R; Cheang P; Aik KK
    Biomaterials; 2005 May; 26(15):2343-52. PubMed ID: 15585237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment.
    Ishizawa H; Ogino M
    J Biomed Mater Res; 1995 Sep; 29(9):1071-9. PubMed ID: 8567705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants.
    Kim HW; Knowles JC; Salih V; Kim HE
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):66-76. PubMed ID: 15368229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible.
    Ozeki K; Okuyama Y; Fukui Y; Aoki H
    Biomed Mater Eng; 2006; 16(4):243-51. PubMed ID: 16971742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.