These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 28024624)
1. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique. Ozeki K; Masuzawa T; Aoki H Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():576-582. PubMed ID: 28024624 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM. Ozeki K; Aoki H; Masuzawa T Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique. Ozeki K; Goto T; Aoki H; Masuzawa T Biomed Mater Eng; 2014; 24(5):1793-802. PubMed ID: 25201393 [TBL] [Abstract][Full Text] [Related]
4. Processing and evaluation of bioactive coatings on polymeric implants. Rabiei A; Sandukas S J Biomed Mater Res A; 2013 Sep; 101(9):2621-9. PubMed ID: 23412996 [TBL] [Abstract][Full Text] [Related]
5. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment. Ozeki K; Mishima A; Yuhta T; Fukui Y; Aoki H Biomed Mater Eng; 2003; 13(4):451-63. PubMed ID: 14646059 [TBL] [Abstract][Full Text] [Related]
6. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment. Ozeki K; Aoki H; Fukui Y J Biomed Mater Res A; 2006 Mar; 76(3):605-13. PubMed ID: 16278871 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite. Ozeki K; Goto T; Aoki H; Masuzawa T Biomed Mater Eng; 2014; 24(2):1447-56. PubMed ID: 24642972 [TBL] [Abstract][Full Text] [Related]
8. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility. Ozeki K; Goto T; Aoki H; Masuzawa T Biomed Mater Eng; 2015; 26(3-4):139-47. PubMed ID: 26684886 [TBL] [Abstract][Full Text] [Related]
9. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate. Yang Y; Ong JL J Biomed Mater Res A; 2003 Mar; 64(3):509-16. PubMed ID: 12579565 [TBL] [Abstract][Full Text] [Related]
10. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. Nelea V; Morosanu C; Bercu M; Mihailescu IN J Mater Sci Mater Med; 2007 Dec; 18(12):2347-54. PubMed ID: 17569010 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Deng Y; Zhou P; Liu X; Wang L; Xiong X; Tang Z; Wei J; Wei S Colloids Surf B Biointerfaces; 2015 Dec; 136():64-73. PubMed ID: 26363268 [TBL] [Abstract][Full Text] [Related]
12. Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance. Sak A; Moskalewicz T; Zimowski S; Cieniek Ł; Dubiel B; Radziszewska A; Kot M; Łukaszczyk A Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():52-61. PubMed ID: 27040195 [TBL] [Abstract][Full Text] [Related]
13. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates. Blind O; Klein LH; Dailey B; Jordan L Dent Mater; 2005 Nov; 21(11):1017-24. PubMed ID: 15882899 [TBL] [Abstract][Full Text] [Related]
14. Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. Nakahara I; Takao M; Goto T; Ohtsuki C; Hibino S; Sugano N J Orthop Res; 2012 Oct; 30(10):1618-25. PubMed ID: 22467537 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film. Yang YJ; Tsou HK; Chen YH; Chung CJ; He JL Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():58-66. PubMed ID: 26354240 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites. Ma R; Li Q; Wang L; Zhang X; Fang L; Luo Z; Xue B; Ma L Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():429-439. PubMed ID: 28183629 [TBL] [Abstract][Full Text] [Related]
17. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Yu S; Hariram KP; Kumar R; Cheang P; Aik KK Biomaterials; 2005 May; 26(15):2343-52. PubMed ID: 15585237 [TBL] [Abstract][Full Text] [Related]
18. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. Ishizawa H; Ogino M J Biomed Mater Res; 1995 Sep; 29(9):1071-9. PubMed ID: 8567705 [TBL] [Abstract][Full Text] [Related]
19. Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants. Kim HW; Knowles JC; Salih V; Kim HE J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):66-76. PubMed ID: 15368229 [TBL] [Abstract][Full Text] [Related]
20. Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible. Ozeki K; Okuyama Y; Fukui Y; Aoki H Biomed Mater Eng; 2006; 16(4):243-51. PubMed ID: 16971742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]