These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28025073)

  • 1. Nano- and Microstructured model carrier surfaces to alter dry powder inhaler performance.
    Renner N; Steckel H; Urbanetz N; Scherließ R
    Int J Pharm; 2017 Feb; 518(1-2):20-28. PubMed ID: 28025073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.
    Zellnitz S; Redlinger-Pohn JD; Kappl M; Schroettner H; Urbanetz NA
    Int J Pharm; 2013 Apr; 447(1-2):132-8. PubMed ID: 23470233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.
    Zellnitz S; Schroettner H; Urbanetz NA
    Drug Dev Ind Pharm; 2015; 41(10):1710-7. PubMed ID: 25632978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation.
    Kubavat HA; Shur J; Ruecroft G; Hipkiss D; Price R
    Int J Pharm; 2012 Jul; 430(1-2):26-33. PubMed ID: 22449413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.
    Shur J; Pitchayajittipong C; Rogueda P; Price R
    Ther Deliv; 2013 Aug; 4(8):925-37. PubMed ID: 23919472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations.
    Donovan MJ; Smyth HD
    Int J Pharm; 2010 Dec; 402(1-2):1-9. PubMed ID: 20816928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle engineered mannitol for carrier-based inhalation - A serious alternative?
    Hertel N; Birk G; Scherließ R
    Int J Pharm; 2020 Mar; 577():118901. PubMed ID: 31846726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM; MacRitchie HB; Marriott C; Martin GP
    Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler(®) in Comparison with Diskus(®) and Turbohaler(®) Dry Powder Inhalers.
    Buttini F; Brambilla G; Copelli D; Sisti V; Balducci AG; Bettini R; Pasquali I
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):167-78. PubMed ID: 26355743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of crystal form of ipratropium bromide on micronisation and aerosolisation behaviour in dry powder inhaler formulations.
    Shur J; Kubavat HA; Ruecroft G; Hipkiss D; Price R
    J Pharm Pharmacol; 2012 Sep; 64(9):1326-36. PubMed ID: 22881444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems.
    Ooi J; Traini D; Hoe S; Wong W; Young PM
    Int J Pharm; 2011 Jul; 413(1-2):1-9. PubMed ID: 21501674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation performance of pollen-shape carrier in dry powder formulation with different drug mixing ratios: comparison with lactose carrier.
    Hassan MS; Lau R
    Int J Pharm; 2010 Feb; 386(1-2):6-14. PubMed ID: 19922775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of drug loading on formulation structure and aerosol performance in carrier based dry powder inhalers.
    Young PM; Wood O; Ooi J; Traini D
    Int J Pharm; 2011 Sep; 416(1):129-35. PubMed ID: 21708238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the particulate microstructure of the aerodynamic particle size distribution of dry powder inhaler combination products.
    Jetzer MW; Morrical BD; Schneider M; Edge S; Imanidis G
    Int J Pharm; 2018 Mar; 538(1-2):30-39. PubMed ID: 29289516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhalation performance of pollen-shape carrier in dry powder formulation: effect of size and surface morphology.
    Hassan MS; Lau R
    Int J Pharm; 2011 Jul; 413(1-2):93-102. PubMed ID: 21540087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.