These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28025146)

  • 1. Attachment of a 'molecular spring' restores drug-stimulated ATPase activity to P-glycoprotein lacking both Q loop glutamines.
    Loo TW; Clarke DM
    Biochem Biophys Res Commun; 2017 Jan; 483(1):366-370. PubMed ID: 28025146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A short cross-linker activates human P-glycoprotein missing a catalytic carboxylate.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2017 Dec; 145():27-33. PubMed ID: 28837794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.
    Loo TW; Clarke DM
    Biochem Biophys Res Commun; 2016 Apr; 472(2):379-83. PubMed ID: 26944019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity.
    Loo TW; Clarke DM
    J Biol Chem; 2014 Sep; 289(36):24749-58. PubMed ID: 25053414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together.
    Loo TW; Bartlett MC; Detty MR; Clarke DM
    J Biol Chem; 2012 Aug; 287(32):26806-16. PubMed ID: 22700974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites.
    Loo TW; Clarke DM
    J Biol Chem; 2000 Jun; 275(26):19435-8. PubMed ID: 10806188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the distance between the homologous halves of P-glycoprotein that triggers the high/low ATPase activity switch.
    Loo TW; Clarke DM
    J Biol Chem; 2014 Mar; 289(12):8484-92. PubMed ID: 24523403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locking intracellular helices 2 and 3 together inactivates human P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 2014 Jan; 289(1):229-36. PubMed ID: 24275649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human P-glycoprotein is active when the two halves are clamped together in the closed conformation.
    Loo TW; Bartlett MC; Clarke DM
    Biochem Biophys Res Commun; 2010 May; 395(3):436-40. PubMed ID: 20394729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drugs Modulate Interactions between the First Nucleotide-Binding Domain and the Fourth Cytoplasmic Loop of Human P-Glycoprotein.
    Loo TW; Clarke DM
    Biochemistry; 2016 May; 55(20):2817-20. PubMed ID: 27159830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein.
    Carrier I; Julien M; Gros P
    Biochemistry; 2003 Nov; 42(44):12875-85. PubMed ID: 14596601
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Futamata R; Ogasawara F; Ichikawa T; Kodan A; Kimura Y; Kioka N; Ueda K
    J Biol Chem; 2020 Apr; 295(15):5002-5011. PubMed ID: 32111736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing mutations located throughout the human multidrug resistance P-glycoprotein disrupt interactions between the nucleotide binding domains.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2004 Sep; 279(37):38395-401. PubMed ID: 15247215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2003 Jan; 278(3):1575-8. PubMed ID: 12421806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis.
    Zoghbi ME; Mok L; Swartz DJ; Singh A; Fendley GA; Urbatsch IL; Altenberg GA
    J Biol Chem; 2017 Dec; 292(50):20412-20424. PubMed ID: 29018094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human P-glycoprotein contains a greasy ball-and-socket joint at the second transmission interface.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2013 Jul; 288(28):20326-33. PubMed ID: 23733192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "LSGGQ" motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing walker A sequence.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Nov; 277(44):41303-6. PubMed ID: 12226074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 2015 Dec; 290(49):29389-401. PubMed ID: 26507655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites.
    Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV
    Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.