These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 28025254)

  • 1. Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
    Cherniak M; Anglister L; Lev-Tov A
    J Neurosci; 2017 Feb; 37(5):1294-1311. PubMed ID: 28025254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.
    Etlin A; Finkel E; Mor Y; O'Donovan MJ; Anglister L; Lev-Tov A
    J Neurosci; 2013 Jan; 33(2):734-47. PubMed ID: 23303951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections.
    Finkel E; Etlin A; Cherniak M; Mor Y; Lev-Tov A; Anglister L
    J Comp Neurol; 2014 Oct; 522(15):3437-55. PubMed ID: 24752570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord.
    Cherniak M; Etlin A; Strauss I; Anglister L; Lev-Tov A
    Front Neural Circuits; 2014; 8():143. PubMed ID: 25520624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H; Delvolvé I; Lev-Tov A
    J Neurophysiol; 2002 Aug; 88(2):732-9. PubMed ID: 12163525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord.
    Gabbay H; Lev-Tov A
    J Neurophysiol; 2004 Aug; 92(2):997-1010. PubMed ID: 15084642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascending pathways that mediate cholinergic modulation of lumbar motor activity.
    Anglister L; Cherniak M; Lev-Tov A
    J Neurochem; 2017 Aug; 142 Suppl 2():82-89. PubMed ID: 28791705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmogenic networks are potently modulated by activation of muscarinic acetylcholine receptors in the rodent spinal cord.
    Matzner H; Zelinger M; Cherniak M; Anglister L; Lev-Tov A
    J Neurochem; 2021 Sep; 158(6):1263-1273. PubMed ID: 33735482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats.
    Lev-Tov A; Delvolvé I; Kremer E
    J Neurophysiol; 2000 Feb; 83(2):888-94. PubMed ID: 10669502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control.
    Etlin A; Blivis D; Ben-Zwi M; Lev-Tov A
    J Neurosci; 2010 Aug; 30(31):10324-36. PubMed ID: 20685976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The motor output and behavior produced by rhythmogenic sacrocaudal networks in spinal cords of neonatal rats.
    Delvolvé I; Gabbay H; Lev-Tov A
    J Neurophysiol; 2001 May; 85(5):2100-10. PubMed ID: 11353026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs.
    Juvin L; Le Gal JP; Simmers J; Morin D
    J Neurosci; 2012 Jan; 32(3):953-65. PubMed ID: 22262893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat.
    Beliez L; Barrière G; Bertrand SS; Cazalets JR
    J Neurosci; 2015 Apr; 35(15):6117-30. PubMed ID: 25878284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal pattern of motoneuron activation in the rostral lumbar and the sacral segments during locomotor-like activity in the neonatal mouse spinal cord.
    Bonnot A; Whelan PJ; Mentis GZ; O'Donovan MJ
    J Neurosci; 2002 Feb; 22(3):RC203. PubMed ID: 11826149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.
    Hochman S; Schmidt BJ
    J Neurophysiol; 1998 Feb; 79(2):743-52. PubMed ID: 9463437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.