BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28025331)

  • 1. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution.
    Vicente-Salvador D; Puig M; Gayà-Vidal M; Pacheco S; Giner-Delgado C; Noguera I; Izquierdo D; Martínez-Fundichely A; Ruiz-Herrera A; Estivill X; Aguado C; Lucas-Lledó JI; Cáceres M
    Hum Mol Genet; 2017 Feb; 26(3):567-581. PubMed ID: 28025331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion variants in human and primate genomes.
    Catacchio CR; Maggiolini FAM; D'Addabbo P; Bitonto M; Capozzi O; Lepore Signorile M; Miroballo M; Archidiacono N; Eichler EE; Ventura M; Antonacci F
    Genome Res; 2018 Jun; 28(6):910-920. PubMed ID: 29776991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation and genotyping of multiple human polymorphic inversions mediated by inverted repeats reveals a high degree of recurrence.
    Aguado C; Gayà-Vidal M; Villatoro S; Oliva M; Izquierdo D; Giner-Delgado C; Montalvo V; García-González J; Martínez-Fundichely A; Capilla L; Ruiz-Herrera A; Estivill X; Puig M; Cáceres M
    PLoS Genet; 2014 Mar; 10(3):e1004208. PubMed ID: 24651690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for large inversion polymorphisms in the human genome from HapMap data.
    Bansal V; Bashir A; Bafna V
    Genome Res; 2007 Feb; 17(2):219-30. PubMed ID: 17185644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human inversions and their functional consequences.
    Puig M; Casillas S; Villatoro S; Cáceres M
    Brief Funct Genomics; 2015 Sep; 14(5):369-79. PubMed ID: 25998059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of large genomic inversions using long range information.
    Eslami Rasekh M; Chiatante G; Miroballo M; Tang J; Ventura M; Amemiya CT; Eichler EE; Antonacci F; Alkan C
    BMC Genomics; 2017 Jan; 18(1):65. PubMed ID: 28073353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InvFEST, a database integrating information of polymorphic inversions in the human genome.
    Martínez-Fundichely A; Casillas S; Egea R; Ràmia M; Barbadilla A; Pantano L; Puig M; Cáceres M
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1027-32. PubMed ID: 24253300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.
    Feuk L; MacDonald JR; Tang T; Carson AR; Li M; Rao G; Khaja R; Scherer SW
    PLoS Genet; 2005 Oct; 1(4):e56. PubMed ID: 16254605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of inversion polymorphisms in the human genome using principal components analysis.
    Ma J; Amos CI
    PLoS One; 2012; 7(7):e40224. PubMed ID: 22808122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population genomics of inversion polymorphisms in Drosophila melanogaster.
    Corbett-Detig RB; Hartl DL
    PLoS Genet; 2012; 8(12):e1003056. PubMed ID: 23284285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection on Inversion Breakpoints Favors Proximity to Pairing Sensitive Sites in Drosophila melanogaster.
    Corbett-Detig RB
    Genetics; 2016 Sep; 204(1):259-65. PubMed ID: 27343234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assaying chromosomal inversions by single-molecule haplotyping.
    Turner DJ; Shendure J; Porreca G; Church G; Green P; Tyler-Smith C; Hurles ME
    Nat Methods; 2006 Jun; 3(6):439-45. PubMed ID: 16721377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii.
    Casals F; Cáceres M; Ruiz A
    Mol Biol Evol; 2003 May; 20(5):674-85. PubMed ID: 12679549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the impact of uncharacterized inversions in the human genome by droplet digital PCR.
    Puig M; Lerga-Jaso J; Giner-Delgado C; Pacheco S; Izquierdo D; Delprat A; Gayà-Vidal M; Regan JF; Karlin-Neumann G; Cáceres M
    Genome Res; 2020 May; 30(5):724-735. PubMed ID: 32424072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.
    Guillén Y; Ruiz A
    BMC Genomics; 2012 Feb; 13():53. PubMed ID: 22296923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and frequency estimation of inversion polymorphisms from haplotype data.
    Sindi SS; Raphael BJ
    J Comput Biol; 2010 Mar; 17(3):517-31. PubMed ID: 20377461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural selection and the distribution of chromosomal inversion lengths.
    Connallon T; Olito C
    Mol Ecol; 2022 Jul; 31(13):3627-3641. PubMed ID: 34297880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the breakpoints of a polymorphic inversion complex detects strict and broad breakpoint reuse at the molecular level.
    Puerma E; Orengo DJ; Salguero D; Papaceit M; Segarra C; Aguadé M
    Mol Biol Evol; 2014 Sep; 31(9):2331-41. PubMed ID: 24881049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversions on human chromosomes.
    Kosuthova K; Solc R
    Am J Med Genet A; 2023 Mar; 191(3):672-683. PubMed ID: 36495134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.