These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28025391)

  • 1. Salt-mediated two-site ligand binding by the cocaine-binding aptamer.
    Neves MAD; Slavkovic S; Churcher ZR; Johnson PE
    Nucleic Acids Res; 2017 Feb; 45(3):1041-1048. PubMed ID: 28025391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.
    Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE
    Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomolar binding affinity of quinine-based antimalarial compounds by the cocaine-binding aptamer.
    Slavkovic S; Churcher ZR; Johnson PE
    Bioorg Med Chem; 2018 Nov; 26(20):5427-5434. PubMed ID: 30266453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.
    Neves MAD; Shoara AA; Reinstein O; Abbasi Borhani O; Martin TR; Johnson PE
    ACS Sens; 2017 Oct; 2(10):1539-1545. PubMed ID: 28929744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study.
    Neves MA; Reinstein O; Johnson PE
    Biochemistry; 2010 Oct; 49(39):8478-87. PubMed ID: 20735071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer.
    Churcher ZR; Neves MAD; Hunter HN; Johnson PE
    J Biomol NMR; 2017 May; 68(1):33-39. PubMed ID: 28477231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism.
    Reinstein O; Neves MA; Saad M; Boodram SN; Lombardo S; Beckham SA; Brouwer J; Audette GF; Groves P; Wilce MC; Johnson PE
    Biochemistry; 2011 Nov; 50(43):9368-76. PubMed ID: 21942676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl.
    Sachan A; Ilgu M; Kempema A; Kraus GA; Nilsen-Hamilton M
    Anal Chem; 2016 Aug; 88(15):7715-23. PubMed ID: 27348073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Aptamer-Small Molecule Binding Interactions Using Isothermal Titration Calorimetry.
    Slavkovic S; Johnson PE
    Methods Mol Biol; 2023; 2570():105-118. PubMed ID: 36156777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a thermal-stable structure-switching cocaine-binding aptamer.
    Shoara AA; Reinstein O; Borhani OA; Martin TR; Slavkovic S; Churcher ZR; Johnson PE
    Biochimie; 2018 Feb; 145():137-144. PubMed ID: 28838608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.
    Slavkovic S; Altunisik M; Reinstein O; Johnson PE
    Bioorg Med Chem; 2015 May; 23(10):2593-7. PubMed ID: 25858454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study.
    Neves MA; Reinstein O; Saad M; Johnson PE
    Biophys Chem; 2010 Dec; 153(1):9-16. PubMed ID: 21035241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences.
    Kuo TC; Lee PC; Tsai CW; Chen WY
    J Mol Recognit; 2013 Mar; 26(3):149-59. PubMed ID: 23345105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism.
    Slavkovic S; Zhu Y; Churcher ZR; Shoara AA; Johnson AE; Johnson PE
    Sci Rep; 2020 Nov; 10(1):18944. PubMed ID: 33144644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Staphylococcus aureus DNA aptamer by enzyme-linked aptamer assay and isothermal titration calorimetry.
    Bayraç C; Öktem HA
    J Mol Recognit; 2017 Feb; 30(2):. PubMed ID: 27696554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Experimental Parameters to Explore Small-Ligand/Aptamer Interactions through Use of (1) H NMR Spectroscopy and Molecular Modeling.
    Souard F; Perrier S; Noël V; Fave C; Fiore E; Peyrin E; Garcia J; Vanhaverbeke C
    Chemistry; 2015 Oct; 21(44):15740-8. PubMed ID: 26356596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine.
    Duchardt-Ferner E; Juen M; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2017 Apr; 11(1):29-34. PubMed ID: 27730489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.