These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28025798)

  • 1. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-
    Patel AB; Lai JC; Chowdhury GI; Rothman DL; Behar KL
    Neurochem Res; 2017 Jan; 42(1):173-190. PubMed ID: 28025798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.
    Patel AB; de Graaf RA; Rothman DL; Behar KL
    J Neurosci Res; 2015 Jul; 93(7):1101-8. PubMed ID: 25663257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C]] glucose with or without ammonium acetate.
    Kanamatsu T; Tsukada Y
    Brain Res; 1999 Sep; 841(1-2):11-9. PubMed ID: 10546983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic compartmentation in cortical synaptosomes: influence of glucose and preferential incorporation of endogenous glutamate into GABA.
    Sonnewald U; McKenna M
    Neurochem Res; 2002 Feb; 27(1-2):43-50. PubMed ID: 11926275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase-deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling.
    Chowdhury GM; Gupta M; Gibson KM; Patel AB; Behar KL
    J Neurochem; 2007 Dec; 103(5):2077-91. PubMed ID: 17854388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of turnover of cortical GABA from [1-13C]glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA).
    Manor D; Rothman DL; Mason GF; Hyder F; Petroff OA; Behar KL
    Neurochem Res; 1996 Sep; 21(9):1031-41. PubMed ID: 8897466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.
    Borisova T; Nazarova A; Dekaliuk M; Krisanova N; Pozdnyakova N; Borysov A; Sivko R; Demchenko AP
    Int J Biochem Cell Biol; 2015 Feb; 59():203-15. PubMed ID: 25486182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminopyridine-evoked release.
    Westphalen RI; Hemmings HC
    J Pharmacol Exp Ther; 2006 Jan; 316(1):216-23. PubMed ID: 16174800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during.
    Sibson NR; Mason GF; Shen J; Cline GW; Herskovits AZ; Wall JE; Behar KL; Rothman DL; Shulman RG
    J Neurochem; 2001 Feb; 76(4):975-89. PubMed ID: 11181817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Gradient of Glutamate Across the Membrane: Glutamate/Aspartate-Induced Changes in the Ambient Level of L-[
    Borisova T; Borysov A; Pastukhov A; Krisanova N
    Cell Mol Neurobiol; 2016 Nov; 36(8):1229-1240. PubMed ID: 26886753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: basal release.
    Westphalen RI; Hemmings HC
    J Pharmacol Exp Ther; 2006 Jan; 316(1):208-15. PubMed ID: 16174801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.
    Tiwari V; Veeraiah P; Subramaniam V; Patel AB
    J Neurochem; 2014 Mar; 128(5):628-40. PubMed ID: 24164397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of glial metabolism in diabetic encephalopathy as detected by high resolution 13C NMR.
    García-Espinosa MA; García-Martín ML; Cerdán S
    NMR Biomed; 2003; 16(6-7):440-9. PubMed ID: 14679506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.
    Hohnholt MC; Andersen VH; Bak LK; Waagepetersen HS
    Neurochem Res; 2017 Jan; 42(1):191-201. PubMed ID: 27545309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C nuclear magnetic resonance evidence for gamma-aminobutyric acid formation via pyruvate carboxylase in rat brain: a metabolic basis for compartmentation.
    Brainard JR; Kyner E; Rosenberg GA
    J Neurochem; 1989 Oct; 53(4):1285-92. PubMed ID: 2769268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired glutamine metabolism in NMDA receptor hypofunction induced by MK801.
    Brenner E; Kondziella D; Håberg A; Sonnewald U
    J Neurochem; 2005 Sep; 94(6):1594-603. PubMed ID: 16045441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin.
    Xu Y; Oz G; LaNoue KF; Keiger CJ; Berkich DA; Gruetter R; Hutson SH
    J Neurochem; 2004 Sep; 90(5):1104-16. PubMed ID: 15312166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo.
    de Graaf RA; Mason GF; Patel AB; Rothman DL; Behar KL
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12700-5. PubMed ID: 15310848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentylenetetrazole decreases metabolic glutamate turnover in rat brain.
    Eloqayli H; Dahl CB; Götestam KG; Unsgård G; Hadidi H; Sonnewald U
    J Neurochem; 2003 Jun; 85(5):1200-7. PubMed ID: 12753079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-
    McNair LM; Mason GF; Chowdhury GM; Jiang L; Ma X; Rothman DL; Waagepetersen HS; Behar KL
    J Cereb Blood Flow Metab; 2022 Aug; 42(8):1507-1523. PubMed ID: 35048735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.