These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28025883)

  • 1. Self-Assembling Halloysite Nanotubes into Concentric Ring Patterns in a Sphere-on-Flat Geometry.
    Liu M; Huo Z; Liu T; Shen Y; He R; Zhou C
    Langmuir; 2017 Mar; 33(12):3088-3098. PubMed ID: 28025883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.
    Liu M; He R; Yang J; Zhao W; Zhou C
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7709-19. PubMed ID: 26967539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells.
    He R; Liu M; Shen Y; Long Z; Zhou C
    J Mater Chem B; 2017 Mar; 5(9):1712-1723. PubMed ID: 32263912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable coffee-ring formation of halloysite nanotubes by evaporating sessile drops.
    Liu H; Wang Y; Luo Y; Guo M; Feng Y; Liu M
    Soft Matter; 2021 Oct; 17(41):9514-9527. PubMed ID: 34617549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling semicrystalline polymer into highly ordered, microscopic concentric rings by evaporation.
    Byun M; Hong SW; Zhu L; Lin Z
    Langmuir; 2008 Apr; 24(7):3525-31. PubMed ID: 18275235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials.
    Zhao X; Zhou C; Liu M
    J Mater Chem B; 2020 Feb; 8(5):838-851. PubMed ID: 31830201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Application of Polymer Spherulite-like Patterns of Halloysite Nanotubes by Evaporation-Induced Self-Assembly.
    Xu Y; He Y; Wu F; Zhou X; Liu M
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15177-15192. PubMed ID: 38471076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of halloysite nanotubes on the structure and function of important multiple blood components.
    Wu K; Feng R; Jiao Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():72-78. PubMed ID: 28415521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture.
    He R; Liu M; Shen Y; Liang R; Liu W; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():170-181. PubMed ID: 29407145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes.
    Liu M; Jia Z; Liu F; Jia D; Guo B
    J Colloid Interface Sci; 2010 Oct; 350(1):186-93. PubMed ID: 20638073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels.
    Huang B; Liu M; Long Z; Shen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):303-310. PubMed ID: 27770895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal.
    Zeng G; He Y; Zhan Y; Zhang L; Pan Y; Zhang C; Yu Z
    J Hazard Mater; 2016 Nov; 317():60-72. PubMed ID: 27262273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the drying configuration on the patterning of ellipsoids - concentric rings and concentric cracks.
    Mondal R; Basavaraj MG
    Phys Chem Chem Phys; 2019 Sep; 21(36):20045-20054. PubMed ID: 31478535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.
    Jin J; Fu L; Yang H; Ouyang J
    Sci Rep; 2015 Jul; 5():12429. PubMed ID: 26201827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge.
    Xu J; Xia J; Hong SW; Lin Z; Qiu F; Yang Y
    Phys Rev Lett; 2006 Feb; 96(6):066104. PubMed ID: 16606015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan composite hydrogels reinforced with natural clay nanotubes.
    Huang B; Liu M; Zhou C
    Carbohydr Polym; 2017 Nov; 175():689-698. PubMed ID: 28917918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization.
    Kadam AA; Jang J; Jee SC; Sung JS; Lee DS
    Carbohydr Polym; 2018 Aug; 194():208-216. PubMed ID: 29801831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Mesoporous/Macroporous Microparticles Using Three-Dimensional Assembly of Chitosan-Functionalized Halloysite Nanotubes and Their Performance in the Adsorptive Removal of Oil Droplets from Water.
    Eskhan A; Banat F; Abu Haija M; Al-Asheh S
    Langmuir; 2019 Feb; 35(6):2343-2357. PubMed ID: 30626190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.