BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28026016)

  • 1. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection.
    Güell I; Vilà S; Badosa E; Montesinos E; Feliu L; Planas M
    Biopolymers; 2017 May; 108(3):. PubMed ID: 28026016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens.
    Güell I; Micaló L; Cano L; Badosa E; Ferre R; Montesinos E; Bardají E; Feliu L; Planas M
    Peptides; 2012 Jan; 33(1):9-17. PubMed ID: 22198367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria.
    Camó C; Torné M; Besalú E; Rosés C; Cirac AD; Moiset G; Badosa E; Bardají E; Montesinos E; Planas M; Feliu L
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29072606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198.
    Cirac AD; Torné M; Badosa E; Montesinos E; Salvador P; Feliu L; Planas M
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28672817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria.
    Monroc S; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E
    Peptides; 2006 Nov; 27(11):2567-74. PubMed ID: 16730857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria.
    Badosa E; Ferre R; Planas M; Feliu L; Besalú E; Cabrefiga J; Bardají E; Montesinos E
    Peptides; 2007 Dec; 28(12):2276-85. PubMed ID: 17980935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach.
    Monroc S; Badosa E; Besalú E; Planas M; Bardají E; Montesinos E; Feliu L
    Peptides; 2006 Nov; 27(11):2575-84. PubMed ID: 16762457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids.
    Güell I; Cabrefiga J; Badosa E; Ferre R; Talleda M; Bardají E; Planas M; Feliu L; Montesinos E
    Appl Environ Microbiol; 2011 Apr; 77(8):2667-75. PubMed ID: 21335383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides.
    Ferre R; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E
    Appl Environ Microbiol; 2006 May; 72(5):3302-8. PubMed ID: 16672470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convenient solid-phase strategy for the synthesis of antimicrobial cyclic lipopeptides.
    Vilà S; Badosa E; Montesinos E; Feliu L; Planas M
    Org Biomol Chem; 2013 May; 11(20):3365-74. PubMed ID: 23563492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biological evaluation of some loloatin C analogues.
    Tuin AW; Grotenbreg GM; Spalburg E; de Neeling AJ; Mars-Groenendijk RH; van der Marel GA; Noort D; Overkleeft HS; Overhand M
    Bioorg Med Chem; 2009 Sep; 17(17):6233-40. PubMed ID: 19679485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens.
    Oliveras À; Baró A; Montesinos L; Badosa E; Montesinos E; Feliu L; Planas M
    PLoS One; 2018; 13(7):e0201571. PubMed ID: 30052685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel polycationic analogue of gratisin with antibiotic activity against both Gram-positive and Gram-negative bacteria.
    Tamaki M; Kokuno M; Suzuki Y; Iwama M; Shindo M; Uchida Y
    J Antibiot (Tokyo); 2008 Jan; 61(1):33-5. PubMed ID: 18305357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses of low-hemolytic antimicrobial gratisin peptides.
    Tamaki M; Kokuno M; Sasaki I; Suzuki Y; Iwama M; Saegusa K; Kikuchi Y; Shindo M; Kimura M; Uchida Y
    Bioorg Med Chem Lett; 2009 May; 19(10):2856-9. PubMed ID: 19369073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of novel fatty-acyl gratisin derivatives.
    Tamaki M; Harada T; Fujinuma K; Takanashi K; Shindo M; Kimura M; Uchida Y
    Chem Pharm Bull (Tokyo); 2012; 60(6):743-6. PubMed ID: 22689425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintaining biological activity by using triazoles as disulfide bond mimetics.
    Holland-Nell K; Meldal M
    Angew Chem Int Ed Engl; 2011 May; 50(22):5204-6. PubMed ID: 21472909
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis, conformational analysis and biological studies of cyclic cationic antimicrobial peptides containing sugar amino acids.
    Chakraborty TK; Koley D; Ravi R; Krishnakumari V; Nagaraj R; Kunwar AC
    J Org Chem; 2008 Nov; 73(22):8731-44. PubMed ID: 18937406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides against Pseudomonas syringae pv. actinidiae and Erwinia amylovora: Chemical synthesis, secondary structure, efficacy, and mechanistic investigations.
    Cameron A; De Zoysa GH; Sarojini V
    Biopolymers; 2014 Jan; 102(1):88-96. PubMed ID: 24122768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De-novo design of antimicrobial peptides for plant protection.
    Zeitler B; Herrera Diaz A; Dangel A; Thellmann M; Meyer H; Sattler M; Lindermayr C
    PLoS One; 2013; 8(8):e71687. PubMed ID: 23951222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles.
    Bakka TA; Strøm MB; Andersen JH; Gautun OR
    Bioorg Med Chem Lett; 2017 Mar; 27(5):1119-1123. PubMed ID: 28189422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.