These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28026194)

  • 1. Predicting reading and mathematics from neural activity for feedback learning.
    Peters S; Van der Meulen M; Zanolie K; Crone EA
    Dev Psychol; 2017 Jan; 53(1):149-159. PubMed ID: 28026194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies influence neural activity for feedback learning across child and adolescent development.
    Peters S; Koolschijn PC; Crone EA; Van Duijvenvoorde AC; Raijmakers ME
    Neuropsychologia; 2014 Sep; 62():365-74. PubMed ID: 25050853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural coding of feedback learning across child and adolescent development.
    Peters S; Braams BR; Raijmakers ME; Koolschijn PC; Crone EA
    J Cogn Neurosci; 2014 Aug; 26(8):1705-20. PubMed ID: 24564463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing, mature, and unique functions of the child's brain in reading and mathematics.
    Kersey AJ; Wakim KM; Li R; Cantlon JF
    Dev Cogn Neurosci; 2019 Oct; 39():100684. PubMed ID: 31398551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive strategy use as an index of developmental differences in neural responses to feedback.
    Andersen LM; Visser I; Crone EA; Koolschijn PC; Raijmakers ME
    Dev Psychol; 2014 Dec; 50(12):2686-96. PubMed ID: 25329556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning by doing: an fMRI study of feedback-related brain activations.
    Marco-Pallarés J; Müller SV; Münte TF
    Neuroreport; 2007 Sep; 18(14):1423-6. PubMed ID: 17712267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback.
    Beets IA; Gooijers J; Boisgontier MP; Pauwels L; Coxon JP; Wittenberg G; Swinnen SP
    Cereb Cortex; 2015 Jul; 25(7):1958-69. PubMed ID: 24501382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.
    Bellebaum C; Jokisch D; Gizewski ER; Forsting M; Daum I
    Behav Brain Res; 2012 Feb; 227(1):241-51. PubMed ID: 22074898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separable neural mechanisms contribute to feedback processing in a rule-learning task.
    Zanolie K; Van Leijenhorst L; Rombouts SA; Crone EA
    Neuropsychologia; 2008 Jan; 46(1):117-26. PubMed ID: 17900633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventral striatum is related to within-subject learning performance.
    Vink M; Pas P; Bijleveld E; Custers R; Gladwin TE
    Neuroscience; 2013 Oct; 250():408-16. PubMed ID: 23891754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory-reliant Post-error Slowing Is Associated with Successful Learning and Fronto-occipital Activity.
    Schiffler BC; Almeida R; Granqvist M; Bengtsson SL
    J Cogn Neurosci; 2016 Oct; 28(10):1539-52. PubMed ID: 27243614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks supporting switching, hypothesis testing, and rule application.
    Liu Z; Braunlich K; Wehe HS; Seger CA
    Neuropsychologia; 2015 Oct; 77():19-34. PubMed ID: 26197092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of neural mechanisms for reading.
    Turkeltaub PE; Gareau L; Flowers DL; Zeffiro TA; Eden GF
    Nat Neurosci; 2003 Jul; 6(7):767-73. PubMed ID: 12754516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance monitoring and behavioral adaptation during task switching: an fMRI study.
    von der Gablentz J; Tempelmann C; Münte TF; Heldmann M
    Neuroscience; 2015 Jan; 285():227-35. PubMed ID: 25446349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vicarious reinforcement learning signals when instructing others.
    Apps MA; Lesage E; Ramnani N
    J Neurosci; 2015 Feb; 35(7):2904-13. PubMed ID: 25698730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement.
    Finn AS; Minas JE; Leonard JA; Mackey AP; Salvatore J; Goetz C; West MR; Gabrieli CFO; Gabrieli JDE
    Dev Sci; 2017 Sep; 20(5):. PubMed ID: 27434857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Anterior Insula Encodes Performance Feedback and Relays Prediction Error to the Medial Prefrontal Cortex.
    Billeke P; Ossandon T; Perrone-Bertolotti M; Kahane P; Bastin J; Jerbi K; Lachaux JP; Fuentealba P
    Cereb Cortex; 2020 Jun; 30(7):4011-4025. PubMed ID: 32108230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed, but not immediate, feedback after multiple-choice questions increases performance on a subsequent short-answer, but not multiple-choice, exam: evidence for the dual-process theory of memory.
    Sinha N; Glass AL
    J Gen Psychol; 2015; 142(2):118-34. PubMed ID: 25832741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.