These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 28026747)

  • 1. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.
    Fu SW; Li PC; Lai YH; Yang CC; Hsieh LC; Tsao Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2584-2594. PubMed ID: 28026747
    [No Abstract]   [Full Text] [Related]  

  • 2. Improving the Efficiency of Dysarthria Voice Conversion System Based on Data Augmentation.
    Zheng WZ; Han JY; Chen CY; Chang YJ; Lai YH
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4613-4623. PubMed ID: 37938964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonetic posteriorgram-based voice conversion system to improve speech intelligibility of dysarthric patients.
    Zheng WZ; Han JY; Lee CK; Lin YY; Chang SH; Lai YH
    Comput Methods Programs Biomed; 2022 Mar; 215():106602. PubMed ID: 35021138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A joint-feature learning-based voice conversion system for dysarthric user based on deep learning technology.
    Chen KC; Yeh HW; Hang JY; Jhang SH; Zheng WZ; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1838-1841. PubMed ID: 31946255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multidomain Generative Adversarial Network for Hoarse-to-Normal Voice Conversion.
    Chu M; Wang J; Fan Z; Yang M; Xu C; Ma Y; Tao Z; Wu D
    J Voice; 2023 Oct; ():. PubMed ID: 37845148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum-volume-constrained nonnegative matrix factorization: enhanced ability of learning parts.
    Zhou G; Xie S; Yang Z; Yang JM; He Z
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1626-37. PubMed ID: 21878413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Speech Intelligibility Enhancement Model based on Canonical Correlation and Deep Learning.
    Hussain T; Diyan M; Gogate M; Dashtipour K; Adeel A; Tsao Y; Hussain A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2581-2584. PubMed ID: 36085897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pareto-Optimized Non-Negative Matrix Factorization Approach to the Cleaning of Alaryngeal Speech Signals.
    Maskeliūnas R; Damaševičius R; Kulikajevas A; Pribuišis K; Ulozaitė-Stanienė N; Uloza V
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Learning Based Approach to Synthesize Intelligible Speech with Limited Temporal Envelope Information.
    Hsiao CJ; Chen F; Han JY; Zheng WZ; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1972-1976. PubMed ID: 36086160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The long-term speech outcome in Flemish young adults after two different types of palatoplasty.
    Van Lierde KM; Monstrey S; Bonte K; Van Cauwenberge P; Vinck B
    Int J Pediatr Otorhinolaryngol; 2004 Jul; 68(7):865-75. PubMed ID: 15183576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.
    Lai YH; Chen F; Wang SS; Lu X; Tsao Y; Lee CH
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1568-1578. PubMed ID: 28113304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structured Sparse Spectral Transforms and Structural Measures for Voice Conversion.
    Zhao Y; Kuruvilla-Dugdale M; Song M
    IEEE/ACM Trans Audio Speech Lang Process; 2018 Dec; 26(12):2267-2276. PubMed ID: 31984214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech-in-noise enhancement using amplification and dynamic range compression controlled by the speech intelligibility index.
    Schepker H; Rennies J; Doclo S
    J Acoust Soc Am; 2015 Nov; 138(5):2692-706. PubMed ID: 26627746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Non-Negative Matrix Factorization Architecture Based on Underlying Basis Images Learning.
    Zhao Y; Wang H; Pei J
    IEEE Trans Pattern Anal Mach Intell; 2021 Jun; 43(6):1897-1913. PubMed ID: 31899412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation Learning Based Speech Assistive System for Persons With Dysarthria.
    Chandrakala S; Rajeswari N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1510-1517. PubMed ID: 27992342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants.
    Hu H; Lutman ME; Ewert SD; Li G; Bleeck S
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMF-Based Image Quality Assessment Using Extreme Learning Machine.
    Wang S; Deng C; Lin W; Huang GB; Zhao B
    IEEE Trans Cybern; 2017 Jan; 47(1):232-243. PubMed ID: 26863686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving quality and intelligibility of speech using single microphone for the broadband fMRI noise at low SNR.
    Vahanesa C; Reddy CK; Panahi IM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3674-3678. PubMed ID: 28269091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Long Does It Take for a Voice to Become Familiar? Speech Intelligibility and Voice Recognition Are Differentially Sensitive to Voice Training.
    Holmes E; To G; Johnsrude IS
    Psychol Sci; 2021 Jun; 32(6):903-915. PubMed ID: 33979256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic prediction of intelligible speaking rate for individuals with ALS from speech acoustic and articulatory samples.
    Wang J; Kothalkar PV; Kim M; Bandini A; Cao B; Yunusova Y; Campbell TF; Heitzman D; Green JR
    Int J Speech Lang Pathol; 2018 Nov; 20(6):669-679. PubMed ID: 30409057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.