BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28026781)

  • 1. Exploring Consensus RNA Substructural Patterns Using Subgraph Mining.
    Chen Q; Lan C; Chen B; Wang L; Li J; Zhang C
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1134-1146. PubMed ID: 28026781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Exact Pattern Matching for Non-Fixed RNA Structures.
    Amit M; Backofen R; Heyne S; Landau GM; Möhl M; Otto C; Will S
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):219-30. PubMed ID: 26355520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining frequent stem patterns from unaligned RNA sequences.
    Hamada M; Tsuda K; Kudo T; Kin T; Asai K
    Bioinformatics; 2006 Oct; 22(20):2480-7. PubMed ID: 16908501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining characteristic relations bind to RNA secondary structures.
    Chen Q; Chen YP
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):10-5. PubMed ID: 19783506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of RNA structures with chemical probing data.
    Ge P; Zhang S
    Methods; 2015 Jun; 79-80():60-6. PubMed ID: 25687190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient RNA structure comparison algorithms.
    Arslan AN; Anandan J; Fry E; Monschke K; Ganneboina N; Bowerman J
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740009. PubMed ID: 29113560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAshapes: an integrated RNA analysis package based on abstract shapes.
    Steffen P; Voss B; Rehmsmeier M; Reeder J; Giegerich R
    Bioinformatics; 2006 Feb; 22(4):500-3. PubMed ID: 16357029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein function by frequent functional association pattern mining in protein interaction networks.
    Cho YR; Zhang A
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):30-6. PubMed ID: 19726271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate matching of structured motifs in DNA sequences.
    El-Mabrouk N; Raffinot M; Duchesne JE; Lajoie M; Luc N
    J Bioinform Comput Biol; 2005 Apr; 3(2):317-42. PubMed ID: 15852508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lightweight comparison of RNAs based on exact sequence-structure matches.
    Heyne S; Will S; Beckstette M; Backofen R
    Bioinformatics; 2009 Aug; 25(16):2095-102. PubMed ID: 19189979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to benchmark RNA secondary structure prediction accuracy.
    Mathews DH
    Methods; 2019 Jun; 162-163():60-67. PubMed ID: 30951834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput determination of RNA structures.
    Strobel EJ; Yu AM; Lucks JB
    Nat Rev Genet; 2018 Oct; 19(10):615-634. PubMed ID: 30054568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.
    Reinharz V; Soulé A; Westhof E; Waldispühl J; Denise A
    Nucleic Acids Res; 2018 May; 46(8):3841-3851. PubMed ID: 29608773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs.
    Laserson U; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate detection of RNA stem-loops in structurome data reveals widespread association with protein binding sites.
    Radecki P; Uppuluri R; Deshpande K; Aviran S
    RNA Biol; 2021 Oct; 18(sup1):521-536. PubMed ID: 34606413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.