These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 28026785)
1. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis. Deng X; Tian X; Chen S; Harris CJ IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785 [TBL] [Abstract][Full Text] [Related]
2. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems. Mansouri M; Nounou MN; Nounou HN IEEE Trans Nanobioscience; 2017 Sep; 16(6):504-512. PubMed ID: 28708564 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of uncertain nonlinear systems using interval kernel principal components analysis: Application to a weather station. Chakour C; Benyounes A; Boudiaf M ISA Trans; 2018 Dec; 83():126-141. PubMed ID: 30243513 [TBL] [Abstract][Full Text] [Related]
4. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring. Deng X; Wang L ISA Trans; 2018 Jan; 72():218-228. PubMed ID: 29017769 [TBL] [Abstract][Full Text] [Related]
5. Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring. Jaffel I; Taouali O; Harkat MF; Messaoud H ISA Trans; 2016 Sep; 64():184-192. PubMed ID: 27342996 [TBL] [Abstract][Full Text] [Related]
6. Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis. Cai P; Deng X ISA Trans; 2020 Oct; 105():210-220. PubMed ID: 32466844 [TBL] [Abstract][Full Text] [Related]
7. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis. Zhang H; Tian X; Deng X; Cao Y ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590 [TBL] [Abstract][Full Text] [Related]
8. Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis. Cai L; Tian X; Chen S IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):122-135. PubMed ID: 26685274 [TBL] [Abstract][Full Text] [Related]
9. Investigating Machine Learning and Control Theory Approaches for Process Fault Detection: A Comparative Study of KPCA and the Observer-Based Method. Lajmi F; Mhamdi L; Abdelbaki W; Dhouibi H; Younes K Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571683 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear Dynamic Process Monitoring Based on Ensemble Kernel Canonical Variate Analysis and Bayesian Inference. Wang X; Wu P ACS Omega; 2022 Jun; 7(22):18904-18921. PubMed ID: 35694473 [TBL] [Abstract][Full Text] [Related]
11. A Nonlinear Support Vector Machine-Based Feature Selection Approach for Fault Detection and Diagnosis: Application to the Tennessee Eastman Process. Onel M; Kieslich CA; Pistikopoulos EN AIChE J; 2019 Mar; 65(3):992-1005. PubMed ID: 32377021 [TBL] [Abstract][Full Text] [Related]
12. Health status monitoring for ICU patients based on locally weighted principal component analysis. Ding Y; Ma X; Wang Y Comput Methods Programs Biomed; 2018 Mar; 156():61-71. PubMed ID: 29428077 [TBL] [Abstract][Full Text] [Related]
13. A hybrid intelligent multi-fault detection method for rotating machinery based on RSGWPT, KPCA and Twin SVM. Liu Z; Guo W; Hu J; Ma W ISA Trans; 2017 Jan; 66():249-261. PubMed ID: 27837907 [TBL] [Abstract][Full Text] [Related]
14. A nonlinear quality-related fault detection approach based on modified kernel partial least squares. Jiao J; Zhao N; Wang G; Yin S ISA Trans; 2017 Jan; 66():275-283. PubMed ID: 27817839 [TBL] [Abstract][Full Text] [Related]
15. Kernel Generalized Likelihood Ratio Test for Fault Detection of Biological Systems. Mansouri M; Baklouti R; Harkat MF; Nounou M; Nounou H; Hamida AB IEEE Trans Nanobioscience; 2018 Oct; 17(4):498-506. PubMed ID: 30296237 [TBL] [Abstract][Full Text] [Related]
16. Novel variation mode decomposition integrated adaptive sparse principal component analysis and it application in fault diagnosis. Geng Z; Duan X; Han Y; Liu F; Xu W ISA Trans; 2022 Sep; 128(Pt B):21-31. PubMed ID: 34857354 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection. Onel M; Kieslich CA; Guzman YA; Pistikopoulos EN Int Symp Process Syst Eng; 2018; 44():2077-2082. PubMed ID: 30534633 [TBL] [Abstract][Full Text] [Related]
18. Neighborhood preserving neural network for fault detection. Zhao H; Lai Z Neural Netw; 2019 Jan; 109():6-18. PubMed ID: 30388431 [TBL] [Abstract][Full Text] [Related]
19. Global-and-local-structure-based neural network for fault detection. Zhao H; Lai Z; Chen Y Neural Netw; 2019 Oct; 118():43-53. PubMed ID: 31228723 [TBL] [Abstract][Full Text] [Related]
20. An Improved Mixture of Probabilistic PCA for Nonlinear Data-Driven Process Monitoring. Zhang J; Chen H; Chen S; Hong X IEEE Trans Cybern; 2019 Jan; 49(1):198-210. PubMed ID: 29990211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]