These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28026951)
41. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Xiong XB; Ma Z; Lai R; Lavasanifar A Biomaterials; 2010 Feb; 31(4):757-68. PubMed ID: 19818492 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Tam YT; To KK; Chow AH Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466 [TBL] [Abstract][Full Text] [Related]
43. The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Wang L; Wang W; Rui Z; Zhou D Drug Deliv; 2016 Nov; 23(9):3200-3208. PubMed ID: 26987435 [TBL] [Abstract][Full Text] [Related]
44. Reductively degradable α-amino acid-based poly(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery. Lv J; Sun H; Zou Y; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z Biomater Sci; 2015 Jul; 3(7):1134-46. PubMed ID: 26221946 [TBL] [Abstract][Full Text] [Related]
45. Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Lu PL; Chen YC; Ou TW; Chen HH; Tsai HC; Wen CJ; Lo CL; Wey SP; Lin KJ; Yen TC; Hsiue GH Biomaterials; 2011 Mar; 32(8):2213-21. PubMed ID: 21176954 [TBL] [Abstract][Full Text] [Related]
46. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Dong DW; Xiang B; Gao W; Yang ZZ; Li JQ; Qi XR Biomaterials; 2013 Jul; 34(20):4849-59. PubMed ID: 23541420 [TBL] [Abstract][Full Text] [Related]
47. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery. Han HS; Thambi T; Choi KY; Son S; Ko H; Lee MC; Jo DG; Chae YS; Kang YM; Lee JY; Park JH Biomacromolecules; 2015 Feb; 16(2):447-56. PubMed ID: 25565417 [TBL] [Abstract][Full Text] [Related]
48. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative. Wang X; Wu G; Lu C; Zhao W; Wang Y; Fan Y; Gao H; Ma J Eur J Pharm Sci; 2012 Aug; 47(1):256-64. PubMed ID: 22522116 [TBL] [Abstract][Full Text] [Related]
50. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Yang Y; Pan D; Luo K; Li L; Gu Z Biomaterials; 2013 Nov; 34(33):8430-43. PubMed ID: 23896006 [TBL] [Abstract][Full Text] [Related]
51. Anti-angiogenic activity and antitumor efficacy of amphiphilic twin drug from ursolic acid and low molecular weight heparin. Cheng W; Dahmani FZ; Zhang J; Xiong H; Wu Y; Yin L; Zhou J; Yao J Nanotechnology; 2017 Feb; 28(7):075102. PubMed ID: 28091396 [TBL] [Abstract][Full Text] [Related]
52. Rational design of multimodal therapeutic nanosystems for effective inhibition of tumor growth and metastasis. Wang F; Huang Q; Wang Y; Zhang W; Lin R; Yu Y; Shen Y; Cui H; Guo S Acta Biomater; 2018 Sep; 77():240-254. PubMed ID: 30012354 [TBL] [Abstract][Full Text] [Related]
53. Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Termsarasab U; Cho HJ; Kim DH; Chong S; Chung SJ; Shim CK; Moon HT; Kim DD Int J Pharm; 2013 Jan; 441(1-2):373-80. PubMed ID: 23174411 [TBL] [Abstract][Full Text] [Related]
54. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433 [TBL] [Abstract][Full Text] [Related]
55. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Liu J; Wei T; Zhao J; Huang Y; Deng H; Kumar A; Wang C; Liang Z; Ma X; Liang XJ Biomaterials; 2016 Jun; 91():44-56. PubMed ID: 26994877 [TBL] [Abstract][Full Text] [Related]
56. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. Cabeza L; Ortiz R; Prados J; Delgado ÁV; Martín-Villena MJ; Clares B; Perazzoli G; Entrena JM; Melguizo C; Arias JL Eur J Pharm Sci; 2017 May; 102():24-34. PubMed ID: 28219748 [TBL] [Abstract][Full Text] [Related]
57. Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: In vitro and in vivo evaluation. Wang J; Li L; Wu L; Sun B; Du Y; Sun J; Wang Y; Fu Q; Zhang P; He Z Eur J Pharm Sci; 2017 Mar; 99():185-192. PubMed ID: 27989702 [TBL] [Abstract][Full Text] [Related]
58. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091 [TBL] [Abstract][Full Text] [Related]
59. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy. Mou Q; Ma Y; Zhu X; Yan D J Control Release; 2016 May; 230():34-44. PubMed ID: 27040815 [TBL] [Abstract][Full Text] [Related]
60. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer. Wen ZM; Jie J; Zhang Y; Liu H; Peng LP Biochem Biophys Res Commun; 2017 Dec; 493(4):1430-1437. PubMed ID: 28958938 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]