BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28027190)

  • 1. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.
    Nakajima N; Tamaki T; Hirata M; Soeda S; Nitta M; Hoshi A; Terachi T
    Transplantation; 2017 Oct; 101(10):2312-2320. PubMed ID: 28027190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.
    Hoshi A; Tamaki T; Tono K; Okada Y; Akatsuka A; Usui Y; Terachi T
    Transplantation; 2008 Jun; 85(11):1617-24. PubMed ID: 18551069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.
    Nitta M; Tamaki T; Tono K; Okada Y; Masuda M; Akatsuka A; Hoshi A; Usui Y; Terachi T
    Transplantation; 2010 May; 89(9):1043-9. PubMed ID: 20150836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Akatsuka A
    Histochem Cell Biol; 2007 Oct; 128(4):349-60. PubMed ID: 17762938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.
    Tamaki T; Hirata M; Nakajima N; Saito K; Hashimoto H; Soeda S; Uchiyama Y; Watanabe M
    PLoS One; 2016; 11(11):e0166639. PubMed ID: 27846318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.
    Saito K; Tamaki T; Hirata M; Hashimoto H; Nakazato K; Nakajima N; Kazuno A; Sakai A; Iida M; Okami K
    PLoS One; 2015; 10(9):e0138371. PubMed ID: 26372044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Nitta M; Hoshi A; Akatsuka A
    Stem Cells Dev; 2008 Aug; 17(4):653-67. PubMed ID: 18554087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases.
    Lee JH; Lee SH; Yoo SY; Asahara T; Kwon SM
    Arterioscler Thromb Vasc Biol; 2013 Jul; 33(7):1622-34. PubMed ID: 23640491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A
    Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells.
    Tamaki T; Uchiyama Y; Okada Y; Ishikawa T; Sato M; Akatsuka A; Asahara T
    Circulation; 2005 Nov; 112(18):2857-66. PubMed ID: 16246946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle.
    Tamaki T; Akatsuka A; Okada Y; Matsuzaki Y; Okano H; Kimura M
    Exp Cell Res; 2003 Nov; 291(1):83-90. PubMed ID: 14597410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation Capacity of Porcine Skeletal Muscle-Derived Stem Cells as Intermediate Species between Mice and Humans.
    Tamaki T; Natsume T; Katoh A; Nakajima N; Saito K; Fukuzawa T; Otake M; Enya S; Kangawa A; Imai T; Tamaki M; Uchiyama Y
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets.
    Tamaki T; Soeda S; Hashimoto H; Saito K; Sakai A; Nakajima N; Masuda M; Fukunishi N; Uchiyama Y; Terachi T; Mochida J
    Regen Med; 2013 Jul; 8(4):437-51. PubMed ID: 23826698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells.
    Tamaki T; Hirata M; Soeda S; Nakajima N; Saito K; Nakazato K; Okada Y; Hashimoto H; Uchiyama Y; Mochida J
    PLoS One; 2014; 9(3):e91257. PubMed ID: 24614849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo.
    Tamaki T; Uchiyama Y; Okada Y; Tono K; Masuda M; Nitta M; Hoshi A; Akatsuka A
    Stem Cells Dev; 2010 Apr; 19(4):503-12. PubMed ID: 19634996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution.
    Tamaki T; Uchiyama Y; Hirata M; Hashimoto H; Nakajima N; Saito K; Terachi T; Mochida J
    Front Physiol; 2015; 6():165. PubMed ID: 26082721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.
    Tamaki T; Akatsuka A; Ando K; Nakamura Y; Matsuzawa H; Hotta T; Roy RR; Edgerton VR
    J Cell Biol; 2002 May; 157(4):571-7. PubMed ID: 11994315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Potential of Human Adipose-Derived Stem Cell Exosomes in Stress Urinary Incontinence - An in Vitro and in Vivo Study.
    Ni J; Li H; Zhou Y; Gu B; Xu Y; Fu Q; Peng X; Cao N; Fu Q; Jin M; Sun G; Wang J; Jin Y; Liu F
    Cell Physiol Biochem; 2018; 48(4):1710-1722. PubMed ID: 30077997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.
    Chen W; Xie M; Yang B; Bharadwaj S; Song L; Liu G; Yi S; Ye G; Atala A; Zhang Y
    J Tissue Eng Regen Med; 2017 Feb; 11(2):334-341. PubMed ID: 24945524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem cell therapy for stress urinary incontinence.
    Nikolavsky D; Chancellor MB
    Neurourol Urodyn; 2010; 29 Suppl 1():S36-41. PubMed ID: 20419800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.