These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28027399)

  • 1. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep.
    Barnes AK; Koul-Tiwari R; Garner JM; Geist PA; Datta S
    J Neurochem; 2017 Apr; 141(1):111-123. PubMed ID: 28027399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.
    Datta S; Knapp CM; Koul-Tiwari R; Barnes A
    Behav Brain Res; 2015 Oct; 292():381-92. PubMed ID: 26146031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and Molecular Mechanisms of REM Sleep Homeostatic Drive: A Plausible Component for Behavioral Plasticity.
    Datta S; Oliver MD
    Front Neural Circuits; 2017; 11():63. PubMed ID: 28959190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat.
    Datta S; Prutzman SL
    J Neurophysiol; 2005 Sep; 94(3):1928-37. PubMed ID: 15888525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat.
    Datta S
    J Neurophysiol; 2007 Jun; 97(6):3841-50. PubMed ID: 17409165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep.
    Datta S; Desarnaud F
    J Neurosci; 2010 Sep; 30(37):12263-73. PubMed ID: 20844122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness.
    Datta S; O'Malley MW; Patterson EH
    J Neurosci; 2011 Nov; 31(47):17007-16. PubMed ID: 22114270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of pedunculopontine tegmental protein kinase A: a mechanism for rapid eye movement sleep generation in the freely moving rat.
    Bandyopadhya RS; Datta S; Saha S
    J Neurosci; 2006 Aug; 26(35):8931-42. PubMed ID: 16943549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.
    Petrovic J; Lazic K; Kalauzi A; Saponjic J
    Behav Brain Res; 2014 Sep; 271():258-68. PubMed ID: 24946074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocyte truncated tropomyosin receptor kinase B mediates brain-derived neurotrophic factor anti-apoptotic effect leading to neuroprotection.
    Saba J; Turati J; Ramírez D; Carniglia L; Durand D; Lasaga M; Caruso C
    J Neurochem; 2018 Sep; 146(6):686-702. PubMed ID: 29851427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep.
    Faraguna U; Vyazovskiy VV; Nelson AB; Tononi G; Cirelli C
    J Neurosci; 2008 Apr; 28(15):4088-95. PubMed ID: 18400908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.
    Datta S; Siwek DF; Stack EC
    Neuroscience; 2009 Sep; 163(1):397-414. PubMed ID: 19540313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel role for calcium/calmodulin kinase II within the brainstem pedunculopontine tegmentum for the regulation of wakefulness and rapid eye movement sleep.
    Stack EC; Desarnaud F; Siwek DF; Datta S
    J Neurochem; 2010 Jan; 112(1):271-81. PubMed ID: 19860859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rapid eye movement sleep in the freely moving rat: local microinjection of serotonin, norepinephrine, and adenosine into the brainstem.
    Datta S; Mavanji V; Patterson EH; Ulloor J
    Sleep; 2003 Aug; 26(5):513-20. PubMed ID: 12938803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat.
    Datta S; Spoley EE; Patterson EH
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R752-9. PubMed ID: 11171654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the 5-HT1A receptor ligands flesinoxan and WAY 100635 given systemically or microinjected into the laterodorsal tegmental nucleus on REM sleep in the rat.
    Monti JM; Jantos H
    Behav Brain Res; 2004 May; 151(1-2):159-66. PubMed ID: 15084431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.