BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 28027474)

  • 1. Contaminant bioavailability in soils, sediments, and aquatic environments.
    Traina SJ; Laperche V
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3365-71. PubMed ID: 10097045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bio-beads combined with Pseudomonas edaphica and three phosphate materials for lead immobilization: Performance, mechanism and plant growth.
    Li Q; Yang X; Li C; He A; He S; Li X; Zhang Y; Yao T
    J Environ Manage; 2024 Apr; 357():120797. PubMed ID: 38574707
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Cheng K; Liu Y; Tang M; Zhang H
    Front Microbiol; 2024; 15():1296512. PubMed ID: 38784799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead remediation by geological fluorapatite combined with Penicillium Oxalicum and Red yeast.
    Guan Q; Cheng X; He Y; Yan Y; Zhang L; Wang Z; Zhang L; Tian D
    Microb Cell Fact; 2024 Feb; 23(1):64. PubMed ID: 38402158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Pb(II) by Bacillus megaterium-based microbial-induced phosphate precipitation (MIPP) considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity.
    Xue ZF; Cheng WC; Rahman MM; Wang L; Xie YX
    Environ Pollut; 2024 Aug; 355():124229. PubMed ID: 38801876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H
    Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into tris(2-chloroisopropyl) phosphate biomineralization coupled with lead (II) biostabilization driven by denitrifying bacteria.
    Huang ZS; Tan XQ; Yang HB; Zeng Y; Chen SJ; Wei ZS; Huang YQ
    Sci Total Environ; 2024 Jun; 945():173927. PubMed ID: 38901584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy among extracellular adsorption, bio-precipitation and transmembrane transport of Penicillium oxalicum SL2 enhanced Pb stabilization.
    Tong J; Ye B; Jiang X; Wu H; Xu Q; Luo Y; Pang J; Jia F; Shi J
    J Hazard Mater; 2023 Jul; 454():131537. PubMed ID: 37146333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of kaolinite for removal of phosphate from urban sewage.
    Carbinatti C; da Conceição FT; Moruzzi RB; Menegário AA
    MethodsX; 2021; 8():101423. PubMed ID: 34430318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial and Fungal Diversity Inside the Medieval Building Constructed with Sandstone Plates and Lime Mortar as an Example of the Microbial Colonization of a Nutrient-Limited Extreme Environment (Wawel Royal Castle, Krakow, Poland).
    Dyda M; Pyzik A; Wilkojc E; Kwiatkowska-Kopka B; Sklodowska A
    Microorganisms; 2019 Oct; 7(10):. PubMed ID: 31623322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary Lead and Phosphate Interactions Affect Oral Bioavailability of Soil Lead in the Mouse.
    Bradham KD; Nelson CM; Diamond GL; Thayer WC; Scheckel KG; Noerpel M; Herbin-Davis K; Elek B; Thomas DJ
    Environ Sci Technol; 2019 Nov; 53(21):12556-12564. PubMed ID: 31557437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values.
    Zhang L; Song X; Shao X; Wu Y; Zhang X; Wang S; Pan J; Hu S; Li Z
    Sci Rep; 2019 Sep; 9(1):13353. PubMed ID: 31527665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term in Situ Reduction in Soil Lead Bioavailability Measured in a Mouse Model.
    Bradham KD; Diamond GL; Nelson CM; Noerpel M; Scheckel KG; Elek B; Chaney RL; Ma Q; Thomas DJ
    Environ Sci Technol; 2018 Dec; 52(23):13908-13913. PubMed ID: 30358995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization of Pb-bearing apatite Pb
    Drewniak Ł; Skłodowska A; Manecki M; Bajda T
    Chemosphere; 2017 Mar; 171():302-307. PubMed ID: 28027474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida.
    Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming cerussite to pyromorphite by immobilising Pb(II) using hydroxyapatite and Pseudomonas rhodesiae.
    Li J; Tian X; Bai R; Xiao X; Yang F; Zhao F
    Chemosphere; 2022 Jan; 287(Pt 2):132235. PubMed ID: 34826926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead transformation to pyromorphite by fungi.
    Rhee YJ; Hillier S; Gadd GM
    Curr Biol; 2012 Feb; 22(3):237-41. PubMed ID: 22245002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.