These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28028072)

  • 1. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells.
    Gispan A; Carmi M; Barkai N
    Genome Res; 2017 Feb; 27(2):310-319. PubMed ID: 28028072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination.
    McGuffee SR; Smith DJ; Whitehouse I
    Mol Cell; 2013 Apr; 50(1):123-35. PubMed ID: 23562327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the temporal program of replication initiation in yeast chromosomes.
    Friedman KL; Raghuraman MK; Fangman WL; Brewer BJ
    J Cell Sci Suppl; 1995; 19():51-8. PubMed ID: 8655647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data.
    Luo H; Li J; Eshaghi M; Liu J; Karuturi RK
    BMC Bioinformatics; 2010 May; 11():247. PubMed ID: 20462459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide model for the normal eukaryotic DNA replication fork.
    Larrea AA; Lujan SA; Nick McElhinny SA; Mieczkowski PA; Resnick MA; Gordenin DA; Kunkel TA
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17674-9. PubMed ID: 20876092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do replication forks control late origin firing in Saccharomyces cerevisiae?
    Ma E; Hyrien O; Goldar A
    Nucleic Acids Res; 2012 Mar; 40(5):2010-9. PubMed ID: 22086957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination.
    Hawkins M; Retkute R; Müller CA; Saner N; Tanaka TU; de Moura AP; Nieduszynski CA
    Cell Rep; 2013 Nov; 5(4):1132-41. PubMed ID: 24210825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae.
    Spiesser TW; Klipp E; Barberis M
    Mol Genet Genomics; 2009 Jul; 282(1):25-35. PubMed ID: 19306105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of re-replication reveals inhibitory controls that target multiple stages of replication initiation.
    Tanny RE; MacAlpine DM; Blitzblau HG; Bell SP
    Mol Biol Cell; 2006 May; 17(5):2415-23. PubMed ID: 16525018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and epigenetic determinants of DNA replication origins, position and activation.
    Méchali M; Yoshida K; Coulombe P; Pasero P
    Curr Opin Genet Dev; 2013 Apr; 23(2):124-31. PubMed ID: 23541525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations.
    Goldar A; Arneodo A; Audit B; Argoul F; Rappailles A; Guilbaud G; Petryk N; Kahli M; Hyrien O
    Sci Rep; 2016 Mar; 6():22469. PubMed ID: 26935043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.
    McCune HJ; Danielson LS; Alvino GM; Collingwood D; Delrow JJ; Fangman WL; Brewer BJ; Raghuraman MK
    Genetics; 2008 Dec; 180(4):1833-47. PubMed ID: 18832352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surveying genome replication.
    Kearsey S
    Genome Biol; 2002; 3(6):REVIEWS1016. PubMed ID: 12093380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication fork stalling at natural impediments.
    Mirkin EV; Mirkin SM
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):13-35. PubMed ID: 17347517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ; Kinney JB; Stillman B
    Genome Res; 2016 Mar; 26(3):315-30. PubMed ID: 26733669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae.
    Donato JJ; Chung SC; Tye BK
    PLoS Genet; 2006 Sep; 2(9):e141. PubMed ID: 16965179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication.
    Santocanale C; Diffley JF
    Nature; 1998 Oct; 395(6702):615-8. PubMed ID: 9783589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level.
    Duzdevich D; Warner MD; Ticau S; Ivica NA; Bell SP; Greene EC
    Mol Cell; 2015 May; 58(3):483-94. PubMed ID: 25921072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.