These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 28028492)
1. Traveling wave solutions of the time-delayed generalized Burgers-type equations. Tang B; Fan Y; Wang X; Wang J; Chen S Springerplus; 2016; 5(1):2094. PubMed ID: 28028492 [TBL] [Abstract][Full Text] [Related]
2. Exact traveling wave solutions for system of nonlinear evolution equations. Khan K; Akbar MA; Arnous AH Springerplus; 2016; 5(1):663. PubMed ID: 27347461 [TBL] [Abstract][Full Text] [Related]
3. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation. Islam MH; Khan K; Akbar MA; Salam MA Springerplus; 2014; 3():105. PubMed ID: 24616841 [TBL] [Abstract][Full Text] [Related]
4. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method. Alam MN; Akbar MA; Roshid HO Springerplus; 2014; 3():43. PubMed ID: 24570845 [TBL] [Abstract][Full Text] [Related]
5. A generalized simplest equation method and its application to the Boussinesq-Burgers equation. Sudao B; Wang X PLoS One; 2015; 10(5):e0126635. PubMed ID: 25973605 [TBL] [Abstract][Full Text] [Related]
6. An efficient technique for higher order fractional differential equation. Ali A; Iqbal MA; Ul-Hassan QM; Ahmad J; Mohyud-Din ST Springerplus; 2016; 5():281. PubMed ID: 27047707 [TBL] [Abstract][Full Text] [Related]
7. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method. Alam MN; Akbar MA Springerplus; 2013; 2():617. PubMed ID: 24307985 [TBL] [Abstract][Full Text] [Related]
8. An ansatz for solving nonlinear partial differential equations in mathematical physics. Akbar MA; Ali NH Springerplus; 2016; 5():24. PubMed ID: 26783508 [TBL] [Abstract][Full Text] [Related]
9. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
10. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation. Akbar MA; Mohd Ali NH; Mohyud-Din ST Springerplus; 2013; 2():327. PubMed ID: 24010025 [TBL] [Abstract][Full Text] [Related]
11. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations. Qi JM; Zhang F; Yuan WJ; Huang ZF ScientificWorldJournal; 2014; 2014():743254. PubMed ID: 24678276 [TBL] [Abstract][Full Text] [Related]
12. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations. Gu Y; Qi J J Inequal Appl; 2017; 2017(1):314. PubMed ID: 29299018 [TBL] [Abstract][Full Text] [Related]
13. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation. Roshid HO; Akbar MA; Alam MN; Hoque MF; Rahman N Springerplus; 2014; 3():122. PubMed ID: 25674431 [TBL] [Abstract][Full Text] [Related]
14. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics. Ali HMS; Habib MA; Miah MM; Akbar MA Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721 [TBL] [Abstract][Full Text] [Related]
15. Compatible extension of the Al-Shawba AA; Abdullah FA; Azmi A; Akbar MA; Nisar KS Heliyon; 2023 May; 9(5):e15717. PubMed ID: 37206045 [TBL] [Abstract][Full Text] [Related]
16. Solitary wave solutions of the fourth order Boussinesq equation through the exp(-Ф(η))-expansion method. Akbar MA; Hj Mohd Ali N Springerplus; 2014; 3():344. PubMed ID: 25105084 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs. Akbar MA; Ali NH; Mohyud-Din ST Springerplus; 2013; 2(1):326. PubMed ID: 23961400 [TBL] [Abstract][Full Text] [Related]
18. Traveling waves in nonlinear media with dispersion, dissipation, and reaction. Koçak H Chaos; 2020 Sep; 30(9):093143. PubMed ID: 33003942 [TBL] [Abstract][Full Text] [Related]
19. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations. Islam SM; Khan K; Akbar MA Springerplus; 2015; 4():124. PubMed ID: 25810953 [TBL] [Abstract][Full Text] [Related]
20. Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? Salako RB; Shen W; Xue S J Math Biol; 2019 Sep; 79(4):1455-1490. PubMed ID: 31324959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]