These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28028532)

  • 1. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon photonic crystal thermal emitter at near-infrared wavelengths.
    O'Regan BJ; Wang Y; Krauss TF
    Sci Rep; 2015 Aug; 5():13415. PubMed ID: 26293111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Q mid-infrared thermal emitters operating with high power-utilization efficiency.
    Inoue T; De Zoysa M; Asano T; Noda S
    Opt Express; 2016 Jun; 24(13):15101-9. PubMed ID: 27410661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Thermal Infrared Emitters Integrated into Silicon Photonic Waveguides.
    Negm N; Zayouna S; Parhizkar S; Lin PS; Huang PH; Suckow S; Schroeder S; De Luca E; Briano FO; Quellmalz A; Duesberg GS; Niklaus F; Gylfason KB; Lemme MC
    ACS Photonics; 2024 Aug; 11(8):2961-2969. PubMed ID: 39184180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.
    Karalis A; Joannopoulos JD
    Sci Rep; 2016 Jul; 6():28472. PubMed ID: 27363522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-State Thin-Film Broadband Short-Wave Infrared Light Emitters.
    Pradhan S; Dalmases M; Konstantatos G
    Adv Mater; 2020 Nov; 32(45):e2003830. PubMed ID: 32996211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Fabrication of a Wavelength-Selective Near-Infrared Metasurface Emitter for a Thermophotovoltaic System.
    Sakurai A; Matsuno Y
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings.
    Liu M; Zhao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25306-25315. PubMed ID: 34014072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management.
    Jiang X; Zhang Z; Ma H; Du T; Luo M; Liu D; Yang J
    Opt Express; 2022 May; 30(11):18250-18263. PubMed ID: 36221630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design.
    Matsumoto T; Tomita M
    Opt Express; 2010 Jun; 18 Suppl 2():A192-200. PubMed ID: 20588588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene.
    Krishna A; Kim JM; Leem J; Wang MC; Nam S; Lee J
    Nano Lett; 2019 Aug; 19(8):5086-5092. PubMed ID: 31251631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Graphene Light Emitters.
    Kim YD; Gao Y; Shiue RJ; Wang L; Aslan B; Bae MH; Kim H; Seo D; Choi HJ; Kim SH; Nemilentsau A; Low T; Tan C; Efetov DK; Taniguchi T; Watanabe K; Shepard KL; Heinz TF; Englund D; Hone J
    Nano Lett; 2018 Feb; 18(2):934-940. PubMed ID: 29337567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.