These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28028698)
1. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. Marzuoli R; Finco A; Chiesa M; Gerosa G Environ Sci Pollut Res Int; 2017 Dec; 24(34):26249-26258. PubMed ID: 28028698 [TBL] [Abstract][Full Text] [Related]
2. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. Peng J; Shang B; Xu Y; Feng Z; Calatayud V Environ Pollut; 2020 Jan; 256():113466. PubMed ID: 31679879 [TBL] [Abstract][Full Text] [Related]
3. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. Wu R; Agathokleous E; Feng Z Sci Total Environ; 2021 May; 767():144588. PubMed ID: 33429267 [TBL] [Abstract][Full Text] [Related]
4. Ozone exposure- and flux-yield response relationships for maize. Peng J; Shang B; Xu Y; Feng Z; Pleijel H; Calatayud V Environ Pollut; 2019 Sep; 252(Pt A):1-7. PubMed ID: 31146222 [TBL] [Abstract][Full Text] [Related]
5. Unraveling the difference of sensitivity to ozone between non-hybrid native poplar and hybrid poplar clones: A flux-based dose-response analysis. Hoshika Y; Pollastrini M; Marzuoli R; Gerosa G; Marra E; Moura BB; Agathokleous E; Calatayud V; Feng Z; Sicard P; Paoletti E Environ Pollut; 2024 Oct; 358():124524. PubMed ID: 38986760 [TBL] [Abstract][Full Text] [Related]
6. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. Zhang W; Feng Z; Wang X; Liu X; Hu E Sci Total Environ; 2017 Dec; 599-600():710-720. PubMed ID: 28494296 [TBL] [Abstract][Full Text] [Related]
7. Derivation of ozone flux-yield relationships for lettuce: a key horticultural crop. Goumenaki E; Fernandez IG; Papanikolaou A; Papadopoulou D; Askianakis C; Kouvarakis G; Barnes J Environ Pollut; 2007 Apr; 146(3):699-706. PubMed ID: 17055137 [TBL] [Abstract][Full Text] [Related]
8. Assessment of ozone toxicity among 14 Indian wheat cultivars under field conditions: growth and productivity. Singh AA; Fatima A; Mishra AK; Chaudhary N; Mukherjee A; Agrawal M; Agrawal SB Environ Monit Assess; 2018 Mar; 190(4):190. PubMed ID: 29502252 [TBL] [Abstract][Full Text] [Related]
9. Use of ethylenediurea (EDU) to ameliorate ozone effects on purple coneflower (Echinacea purpurea). Szantoi Z; Chappelka AH; Muntifering RB; Somers GL Environ Pollut; 2007 Nov; 150(2):200-8. PubMed ID: 17412467 [TBL] [Abstract][Full Text] [Related]
10. A three-year free-air experimental assessment of ozone risk on the perennial Vitis vinifera crop species. Moura BB; Manzini J; Paoletti E; Hoshika Y Environ Pollut; 2023 Dec; 338():122626. PubMed ID: 37778493 [TBL] [Abstract][Full Text] [Related]
11. High nitrogen addition decreases the ozone flux by reducing the maximum stomatal conductance in poplar saplings. Shang B; Xu Y; Peng J; Agathokleous E; Feng Z Environ Pollut; 2021 Mar; 272():115979. PubMed ID: 33168377 [TBL] [Abstract][Full Text] [Related]
12. Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures. Calvete-Sogo H; González-Fernández I; García-Gómez H; Alonso R; Elvira S; Sanz J; Bermejo-Bermejo V Environ Pollut; 2017 Jan; 220(Pt A):186-195. PubMed ID: 27751637 [TBL] [Abstract][Full Text] [Related]
13. A regional scale flux-based O Guaita PR; Marzuoli R; Gerosa GA Environ Pollut; 2023 Sep; 333():121860. PubMed ID: 37268219 [TBL] [Abstract][Full Text] [Related]
14. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Feng Z; Uddling J; Tang H; Zhu J; Kobayashi K Glob Chang Biol; 2018 Jun; 24(6):2231-2238. PubMed ID: 29393991 [TBL] [Abstract][Full Text] [Related]
15. From critical levels to critical loads for ozone: a discussion of a new experimental and modelling approach for establishing flux-response relationships for agricultural crops and native plant species. Grünhage L; Jäger HJ Environ Pollut; 2003; 125(1):99-110. PubMed ID: 12804832 [TBL] [Abstract][Full Text] [Related]
16. An assessment of ozone risk for date palm suggests that phytotoxic ozone dose nonlinearly affects carbon gain. Hoshika Y; Moura BB; Cotrozzi L; Nali C; Alfarraj S; Rennenberg H; Paoletti E Environ Pollut; 2024 Feb; 342():123143. PubMed ID: 38097156 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the effects of ozone on yield of Japanese rice (Oryza sativa L.) based on stomatal ozone uptake. Yamaguchi M; Hoshino D; Inada H; Akhtar N; Sumioka C; Takeda K; Izuta T Environ Pollut; 2014 Jan; 184():472-80. PubMed ID: 24125940 [TBL] [Abstract][Full Text] [Related]
18. Assessing the effects of elevated ozone on physiology, growth, yield and quality of soybean in the past 40 years: A meta-analysis. Li C; Gu X; Wu Z; Qin T; Guo L; Wang T; Zhang L; Jiang G Ecotoxicol Environ Saf; 2021 Jan; 208():111644. PubMed ID: 33396164 [TBL] [Abstract][Full Text] [Related]
19. Negative impacts of elevated ozone on dominant species of semi-natural grassland vegetation in Indo-Gangetic plain. Dolker T; Agrawal M Ecotoxicol Environ Saf; 2019 Oct; 182():109404. PubMed ID: 31310902 [TBL] [Abstract][Full Text] [Related]
20. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Pandey AK; Ghosh A; Agrawal M; Agrawal SB Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]