These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28028811)

  • 21. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
    Belmonte S; Morad M
    J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
    Berlin JR; Bassani JW; Bers DM
    Biophys J; 1994 Oct; 67(4):1775-87. PubMed ID: 7819510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart.
    Field ML; Azzawi A; Unitt JF; Seymour AM; Henderson C; Radda GK
    J Mol Cell Cardiol; 1996 Jan; 28(1):65-77. PubMed ID: 8745215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes.
    Zima AV; Copello JA; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):727-41. PubMed ID: 14724208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diastolic dysfunction and abnormality of the Na+/Ca2+ exchanger in single uremic cardiac myocytes.
    McMahon AC; Naqvi RU; Hurst MJ; Raine AE; MacLeod KT
    Kidney Int; 2006 Mar; 69(5):846-51. PubMed ID: 16518344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of mitochondrial Ca²⁺ signaling in rat neonatal cardiomyocytes: evidence from a genetically directed Ca²⁺ probe, mitycam-E31Q.
    Haviland S; Cleemann L; Kettlewell S; Smith GL; Morad M
    Cell Calcium; 2014 Sep; 56(3):133-46. PubMed ID: 24994483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
    Gattoni S; Røe ÅT; Frisk M; Louch WE; Niederer SA; Smith NP
    J Physiol; 2016 Aug; 594(15):4193-224. PubMed ID: 26916026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfur dioxide derivatives modulate Na/Ca exchange currents and cytosolic [Ca2+]i in rat myocytes.
    Nie A; Meng Z
    Biochem Biophys Res Commun; 2007 Jul; 358(3):879-84. PubMed ID: 17502109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial and cytosolic calcium in rat hearts under high-K(+) cardioplegia and pyruvate: mechano-energetic performance.
    Consolini AE; Ragone MI; Bonazzola P
    Can J Physiol Pharmacol; 2011 Jul; 89(7):485-96. PubMed ID: 21812526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice.
    Scorzeto M; Giacomello M; Toniolo L; Canato M; Blaauw B; Paolini C; Protasi F; Reggiani C; Stienen GJ
    PLoS One; 2013; 8(10):e74919. PubMed ID: 24098358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart.
    Lai L; Qiu H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33080805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of mitochondrial re-energization and Ca2+ influx in reperfusion injury of metabolically inhibited cardiac myocytes.
    Rodrigo GC; Standen NB
    Cardiovasc Res; 2005 Aug; 67(2):291-300. PubMed ID: 15885675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Through modulation of cardiac Ca
    Larbig R; Reda S; Paar V; Trost A; Leitner J; Weichselbaumer S; Motloch KA; Wernly B; Arrer A; Strauss B; Lichtenauer M; Reitsamer HA; Eckardt L; Seebohm G; Hoppe UC; Motloch LJ
    Exp Physiol; 2017 Jun; 102(6):650-662. PubMed ID: 28370799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium movement in cardiac mitochondria.
    Boyman L; Chikando AC; Williams GS; Khairallah RJ; Kettlewell S; Ward CW; Smith GL; Kao JP; Lederer WJ
    Biophys J; 2014 Sep; 107(6):1289-301. PubMed ID: 25229137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins.
    Müller-Ehmsen J; Nickel J; Zobel C; Hirsch I; Bölck B; Brixius K; Schwinger RH
    Basic Res Cardiol; 2003 Mar; 98(2):90-6. PubMed ID: 12607130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial calcium and the regulation of metabolism in the heart.
    Williams GS; Boyman L; Lederer WJ
    J Mol Cell Cardiol; 2015 Jan; 78():35-45. PubMed ID: 25450609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt.
    Iguchi M; Kato M; Nakai J; Takeda T; Matsumoto-Ida M; Kita T; Kimura T; Akao M
    Int J Cardiol; 2012 Jul; 158(2):225-34. PubMed ID: 21295866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Ca
    Wacquier B; Romero Campos HE; González-Vélez V; Combettes L; Dupont G
    FEBS J; 2017 Dec; 284(23):4128-4142. PubMed ID: 29055103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes.
    Yan Y; Liu J; Wei C; Li K; Xie W; Wang Y; Cheng H
    Cardiovasc Res; 2008 Jan; 77(2):432-41. PubMed ID: 18006452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells.
    Warashina A
    Cell Calcium; 2006 Jan; 39(1):35-46. PubMed ID: 16257445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.