BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28029036)

  • 1. Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.
    Rougemont B; Bontemps Gallo S; Ayciriex S; Carrière R; Hondermarck H; Lacroix JM; Le Blanc JC; Lemoine J
    Anal Chem; 2017 Feb; 89(3):1421-1426. PubMed ID: 28029036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streamlined Development of Targeted Mass Spectrometry-Based Method Combining Scout-MRM and a Web-Based Tool Indexed with Scout Peptides.
    Ayciriex S; Carrière R; Bardet C; Blanc JCYL; Salvador A; Fortin T; Lemoine J
    Proteomics; 2020 Jan; 20(2):e1900254. PubMed ID: 31872952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling.
    Salvador A; Carrière R; Ayciriex S; Margoum C; Leblanc Y; Lemoine J
    J Chromatogr A; 2020 Jun; 1621():461046. PubMed ID: 32204882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha.
    Leprêtre M; Palos-Ladeiro M; Faugere J; Almunia C; Lemoine J; Armengaud J; Geffard A; Salvador A
    Anal Bioanal Chem; 2020 Oct; 412(26):7333-7347. PubMed ID: 32808052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants.
    Royet K; Parisot N; Rodrigue A; Gueguen E; Condemine G
    Mol Plant Pathol; 2019 Feb; 20(2):287-306. PubMed ID: 30267562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics.
    Faugere J; Gouveia D; Ayciriex S; Chaumot A; Almunia C; François A; Armengaud J; Lemoine J; Geffard O; Degli-Esposti D; Salvador A
    J Proteomics; 2020 Aug; 226():103901. PubMed ID: 32668291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues.
    Antunez-Lamas M; Cabrera E; Lopez-Solanilla E; Solano R; González-Melendi P; Chico JM; Toth I; Birch P; Pritchard L; Liu H; Rodriguez-Palenzuela P
    Mol Microbiol; 2009 Nov; 74(3):662-71. PubMed ID: 19818025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii.
    Pandin C; Caroff M; Condemine G
    Appl Environ Microbiol; 2016 Nov; 82(21):6423-6430. PubMed ID: 27565623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of classic Exp and specific Vfm quorum sensing systems on the phenotypic features of Dickeya solani strains exhibiting different virulence levels.
    Potrykus M; Hugouvieux-Cotte-Pattat N; Lojkowska E
    Mol Plant Pathol; 2018 May; 19(5):1238-1251. PubMed ID: 28921772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tat pathway of plant pathogen Dickeya dadantii 3937 contributes to virulence and fitness.
    Rodríguez-Sanz M; Antúnez-Lamas M; Rojas C; López-Solanilla E; Palacios JM; Rodríguez-Palenzuela P; Rey L
    FEMS Microbiol Lett; 2010 Jan; 302(2):151-8. PubMed ID: 19929966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scout triggered multiple reaction monitoring mass spectrometry for the rapid transfer of large multiplexed targeted methods in metabolomics.
    Brunet TA; Ayciriex S; Arquier D; Lemoine J; Randon J; Salvador A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Aug; 1228():123849. PubMed ID: 37634392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay.
    Bouchart F; Boussemart G; Prouvost AF; Cogez V; Madec E; Vidal O; Delrue B; Bohin JP; Lacroix JM
    J Bacteriol; 2010 Jul; 192(13):3484-90. PubMed ID: 20418397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Both Extended and Tryptic Forms of Stable Isotope-Labeled Standard Peptides Provides an Internal Quality Control of Proteolytic Digestion in Targeted Mass Spectrometry-Based Assays.
    Lundeen RA; Kennedy JJ; Murillo OD; Ivey RG; Zhao L; Schoenherr RM; Hoofnagle AN; Wang P; Whiteaker JR; Paulovich AG
    Mol Cell Proteomics; 2023 Sep; 22(9):100621. PubMed ID: 37478973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wideband PRM: Highly Accurate and Sensitive Method for High-Throughput Targeted Proteomics.
    Nam D; Ji M; Kang C; Kim H; Yang H; Bok KH; Bae J; Hong J; Lee SW
    Anal Chem; 2024 Jun; 96(25):10219-10227. PubMed ID: 38864836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation.
    Percy AJ; Simon R; Chambers AG; Borchers CH
    J Proteomics; 2014 Jun; 106():113-24. PubMed ID: 24769237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A family 3 glycosyl hydrolase of Dickeya dadantii 3937 is involved in the cleavage of aromatic glucosides.
    Charaoui-Boukerzaza S; Hugouvieux-Cotte-Pattat N
    Microbiology (Reading); 2013 Nov; 159(Pt 11):2395-2404. PubMed ID: 24002750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using iRT, a normalized retention time for more targeted measurement of peptides.
    Escher C; Reiter L; MacLean B; Ossola R; Herzog F; Chilton J; MacCoss MJ; Rinner O
    Proteomics; 2012 Apr; 12(8):1111-21. PubMed ID: 22577012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma.
    Abbatiello SE; Schilling B; Mani DR; Zimmerman LJ; Hall SC; MacLean B; Albertolle M; Allen S; Burgess M; Cusack MP; Gosh M; Hedrick V; Held JM; Inerowicz HD; Jackson A; Keshishian H; Kinsinger CR; Lyssand J; Makowski L; Mesri M; Rodriguez H; Rudnick P; Sadowski P; Sedransk N; Shaddox K; Skates SJ; Kuhn E; Smith D; Whiteaker JR; Whitwell C; Zhang S; Borchers CH; Fisher SJ; Gibson BW; Liebler DC; MacCoss MJ; Neubert TA; Paulovich AG; Regnier FE; Tempst P; Carr SA
    Mol Cell Proteomics; 2015 Sep; 14(9):2357-74. PubMed ID: 25693799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Introduction to Advanced Targeted Acquisition Methods.
    van Bentum M; Selbach M
    Mol Cell Proteomics; 2021; 20():100165. PubMed ID: 34673283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing a reliable multiple reaction monitoring-based method for the quantification of obesity-associated comorbidities in serum and adipose tissue requires intensive clinical validation.
    Oberbach A; Schlichting N; Neuhaus J; Kullnick Y; Lehmann S; Heinrich M; Dietrich A; Mohr FW; von Bergen M; Baumann S
    J Proteome Res; 2014 Dec; 13(12):5784-800. PubMed ID: 25318410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.