These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28029239)

  • 1. Solid-State Nuclear Magnetic Resonance Analysis Reveals a Possible Calcium Binding Site of Pradimicin A.
    Doi T; Nakagawa Y; Takegoshi K
    Biochemistry; 2017 Jan; 56(3):468-472. PubMed ID: 28029239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state NMR analysis of calcium and d-mannose binding of BMY-28864, a water-soluble analogue of pradimicin A.
    Nakagawa Y; Doi T; Takegoshi K; Igarashi Y; Ito Y
    Bioorg Med Chem Lett; 2012 Jan; 22(2):1040-3. PubMed ID: 22196119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of the primary mannose binding site of pradimicin A.
    Nakagawa Y; Doi T; Masuda Y; Takegoshi K; Igarashi Y; Ito Y
    J Am Chem Soc; 2011 Nov; 133(43):17485-93. PubMed ID: 21942374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannose-binding geometry of pradimicin A.
    Nakagawa Y; Doi T; Taketani T; Takegoshi K; Igarashi Y; Ito Y
    Chemistry; 2013 Aug; 19(32):10516-25. PubMed ID: 23832850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pradimicin A, a D-mannose-binding antibiotic, binds pyranosides of L-fucose and L-galactose in a calcium-sensitive manner.
    Nakagawa Y; Watanabe Y; Igarashi Y; Ito Y; Ojika M
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2963-6. PubMed ID: 26045034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state NMR spectroscopic analysis of the Ca2+-dependent mannose binding of pradimicin A.
    Nakagawa Y; Masuda Y; Yamada K; Doi T; Takegoshi K; Igarashi Y; Ito Y
    Angew Chem Int Ed Engl; 2011 Jun; 50(27):6084-8. PubMed ID: 21598364
    [No Abstract]   [Full Text] [Related]  

  • 7. A Pradimicin-Based Staining Dye for Glycoprotein Detection.
    Nakagawa Y; Kakihara S; Tsuzuki K; Ojika M; Igarashi Y; Ito Y
    J Nat Prod; 2021 Sep; 84(9):2496-2501. PubMed ID: 34524799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging.
    Nakagawa Y; Doi T; Takegoshi K; Sugahara T; Akase D; Aida M; Tsuzuki K; Watanabe Y; Tomura T; Ojika M; Igarashi Y; Hashizume D; Ito Y
    Cell Chem Biol; 2019 Jul; 26(7):950-959.e8. PubMed ID: 31031141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and carbohydrate specificity of pradimicin S.
    Shahzad-ul-Hussan S; Ghirlando R; Dogo-Isonagie CI; Igarashi Y; Balzarini J; Bewley CA
    J Am Chem Soc; 2012 Aug; 134(30):12346-9. PubMed ID: 22788706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cations in the interaction of pradimicins with HIV-1 envelope gp120.
    Hoorelbeke B; Kim Y; Oki T; Igarashi Y; Balzarini J
    Curr Top Med Chem; 2013 Aug; 13(16):1907-15. PubMed ID: 23895096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eight-coordinate Zn(II), Cd(II), and Pb(II) complexes based on a 1,7-diaza-12-crown-4 platform endowed with a remarkable selectivity over Ca(II).
    Ferreirós-Martínez R; Esteban-Gómez D; de Blas A; Platas-Iglesias C; Rodríguez-Blas T
    Inorg Chem; 2009 Dec; 48(24):11821-31. PubMed ID: 19911785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research.
    Nakagawa Y
    Chembiochem; 2020 Jun; 21(11):1567-1572. PubMed ID: 32012428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis-like cell death of Saccharomyces cerevisiae induced by a mannose-binding antifungal antibiotic, pradimicin.
    Hiramoto F; Nomura N; Furumai T; Oki T; Igarashi Y
    J Antibiot (Tokyo); 2003 Sep; 56(9):768-72. PubMed ID: 14632286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A.
    Miyanishi W; Ojika M; Akase D; Aida M; Igarashi Y; Ito Y; Nakagawa Y
    Bioorg Med Chem; 2022 Feb; 55():116590. PubMed ID: 34973516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the mode of antifungal action of pradimicin antibiotics. II. D-mannopyranoside-binding site and calcium-binding site.
    Ueki T; Numata K; Sawada Y; Nishio M; Ohkuma H; Toda S; Kamachi H; Fukagawa Y; Oki T
    J Antibiot (Tokyo); 1993 Mar; 46(3):455-64. PubMed ID: 8478263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium chelation by bacterial teichoic acid from solid-state nuclear magnetic resonance spectroscopy.
    Halye JL; Rice CV
    Biomacromolecules; 2010 Feb; 11(2):333-40. PubMed ID: 20067325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural abundance 43Ca solid-state NMR characterisation of hydroxyapatite: identification of the two calcium sites.
    Laurencin D; Wong A; Dupree R; Smith ME
    Magn Reson Chem; 2008 Apr; 46(4):347-50. PubMed ID: 18306258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pradimicin S, a new pradimicin analog. III. Application of the frit-FAB LC/MS technique to the elucidation of the pradimicin S biosynthetic pathway.
    Saitoh K; Furumai T; Oki T; Nishida F; Harada K; Suzuki M
    J Antibiot (Tokyo); 1995 Feb; 48(2):162-8. PubMed ID: 7706128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mode of antifungal action of pradimicin antibiotics. III. Spectrophotometric sequence analysis of the ternary complex formation of BMY-28864 with D-mannopyranoside and calcium.
    Ueki T; Oka M; Fukagawa Y; Oki T
    J Antibiot (Tokyo); 1993 Mar; 46(3):465-77. PubMed ID: 8478264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of pradimicin A derivative BMY-28864 to neoglycolipids bearing mannose residues at the non-reducing ends.
    Xu H; Wang F; Mizuochi T; Nakata M
    Biosci Trends; 2008 Jun; 2(3):101-4. PubMed ID: 20103911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.