These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 28029294)
1. Corneal thickness of eyes of healthy goats, sheep, and alpacas manually measured by use of a portable spectral-domain optical coherence tomography device. LoPinto AJ; Pirie CG; Bedenice D; Ayres SL Am J Vet Res; 2017 Jan; 78(1):80-84. PubMed ID: 28029294 [TBL] [Abstract][Full Text] [Related]
2. Manual corneal thickness measurements of healthy equine eyes using a portable spectral-domain optical coherence tomography device. Pirie CG; Alario AF; Barysauskas CM; Gradil C; Uricchio CK Equine Vet J; 2014 Sep; 46(5):631-4. PubMed ID: 24131285 [TBL] [Abstract][Full Text] [Related]
3. Intra and inter-user reliability of central corneal thickness measurements obtained in healthy feline eyes using a portable spectral-domain optical coherence tomography device. Alario AF; Pirie CG Vet Ophthalmol; 2013 Nov; 16(6):446-50. PubMed ID: 23356722 [TBL] [Abstract][Full Text] [Related]
4. Reliability of manual measurements of corneal thickness obtained from healthy canine eyes using spectral-domain optical coherence tomography (SD-OCT). Alario AF; Pirie CG Can J Vet Res; 2014 Jul; 78(3):221-5. PubMed ID: 24982554 [TBL] [Abstract][Full Text] [Related]
5. Canine central corneal thickness measurements via Pentacam-HR Wolfel AE; Pederson SL; Cleymaet AM; Hess AM; Freeman KS Vet Ophthalmol; 2018 Jul; 21(4):362-370. PubMed ID: 29034562 [TBL] [Abstract][Full Text] [Related]
6. Comparison between Pentacam-HR and optical coherence tomographycentral corneal thickness measurements in healthy feline eyes. Cleymaet AM; Hess AM; Freeman KS Vet Ophthalmol; 2016 Jul; 19 Suppl 1():105-14. PubMed ID: 27370363 [TBL] [Abstract][Full Text] [Related]
7. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry. Strom AR; Cortés DE; Rasmussen CA; Thomasy SM; McIntyre K; Lee SF; Kass PH; Mannis MJ; Murphy CJ Vet Ophthalmol; 2016 Jan; 19(1):50-6. PubMed ID: 25676065 [TBL] [Abstract][Full Text] [Related]
8. Ophthalmic variables in rehabilitated juvenile Kemp's ridley sea turtles (Lepidochelys kempii). Gornik KR; Pirie CG; Marrion RM; Wocial JN; Innis CJ J Am Vet Med Assoc; 2016 Mar; 248(6):673-80. PubMed ID: 26953922 [TBL] [Abstract][Full Text] [Related]
9. Reliability of Entire Corneal Thickness Mapping in Normal Post-Laser in situ Keratomileusis and Keratoconus Eyes Using Long Scan Depth Spectral Domain Optical Coherence Tomography. Xu Z; Chen S; Yang C; Huang S; Shen M; Wang Y Ophthalmic Res; 2018; 59(3):115-125. PubMed ID: 28848137 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Total Corneal Thickness and Corneal Layers With Spectral-Domain Optical Coherence Tomography. López de la Fuente C; Sánchez-Cano A; Segura F; Hospital EO; Pinilla I J Refract Surg; 2016 Jan; 32(1):27-32. PubMed ID: 26812711 [TBL] [Abstract][Full Text] [Related]
12. Central corneal thickness measurements in normal dogs: a comparison between ultrasound pachymetry and optical coherence tomography. Alario AF; Pirie CG Vet Ophthalmol; 2014 May; 17(3):207-11. PubMed ID: 23763504 [TBL] [Abstract][Full Text] [Related]
14. Normal corneal thickness measurements in pigmented rabbits using spectral-domain anterior segment optical coherence tomography. Wang X; Wu Q Vet Ophthalmol; 2013 Mar; 16(2):130-4. PubMed ID: 22672083 [TBL] [Abstract][Full Text] [Related]
15. Stromal bed thickness measurement during laser in situ keratomileusis using intraoperative optical coherence tomography. Ye C; Yu M; Jhanji V Cornea; 2015 Apr; 34(4):387-91. PubMed ID: 25651495 [TBL] [Abstract][Full Text] [Related]
16. A Comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Huang J; Ding X; Savini G; Pan C; Feng Y; Cheng D; Hua Y; Hu X; Wang Q Ophthalmology; 2013 Oct; 120(10):1951-8. PubMed ID: 23672973 [TBL] [Abstract][Full Text] [Related]
17. Reliability and reproducibility of assessment of corneal epithelial thickness by fourier domain optical coherence tomography. Prakash G; Agarwal A; Mazhari AI; Chari M; Kumar DA; Kumar G; Singh B Invest Ophthalmol Vis Sci; 2012 May; 53(6):2580-5. PubMed ID: 22427573 [TBL] [Abstract][Full Text] [Related]
18. Comparison of ultrasonic pachymetry and Fourier-domain optical coherence tomography for measurement of corneal thickness in dogs with and without corneal disease. Hoehn AL; Thomasy SM; Kass PH; Horikawa T; Samuel M; Shull OR; Stewart KA; Murphy CJ Vet J; 2018 Dec; 242():59-66. PubMed ID: 30503546 [TBL] [Abstract][Full Text] [Related]
19. Post-Mortem Corneal Thickness Measurements with a Portable Optical Coherence Tomography System: a Reliability Study. Napoli PE; Nioi M; d'Aloja E; Fossarello M Sci Rep; 2016 Jul; 6():30428. PubMed ID: 27457021 [TBL] [Abstract][Full Text] [Related]