These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28029613)

  • 1. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.
    Pfiffner F; Prochazka L; Peus D; Dobrev I; Dalbert A; Sim JH; Kesterke R; Walraevens J; Harris F; Roosli C; Obrist D; Huber A
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2431-2438. PubMed ID: 28029613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments.
    Pfiffner F; Prochazka L; Dobrev I; Klein K; Sulser P; Péus D; Sim JH; Dalbert A; Röösli C; Obrist D; Huber A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packaging Technology for an Implantable Inner Ear MEMS Microphone.
    Prochazka L; Huber A; Dobrev I; Harris F; Dalbert A; Röösli C; Obrist D; Pfiffner F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor.
    Grossöhmichen M; Salcher R; Püschel K; Lenarz T; Maier H
    Biomed Res Int; 2016; 2016():6059479. PubMed ID: 27610377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and experimental study of microcantilever ultrasonic detection transducers.
    Chen X; Stratoudaki T; Sharples SD; Clark M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2722-32. PubMed ID: 20040409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
    Huang P; Guo J; Megerian CA; Young DJ; Ko WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5692-5. PubMed ID: 18003304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
    Koch M; Seidler H; Hellmuth A; Bornitz M; Lasurashvili N; Zahnert T
    Hear Res; 2013 Jul; 301():35-43. PubMed ID: 23246425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Vibro-Acoustic Hybrid Implantable Microphone for Middle Ear Hearing Aids and Cochlear Implants.
    Seong KW; Mun HJ; Shin DH; Kim JH; Nakajima HH; Puria S; Cho JH
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Intracochlear Pressure Sensor as a Microphone for a Fully Implantable Cochlear Implant.
    Creighton FP; Guan X; Park S; Kymissis IJ; Nakajima HH; Olson ES
    Otol Neurotol; 2016 Dec; 37(10):1596-1600. PubMed ID: 27631834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig.
    Zhao C; Knisely KE; Colesa DJ; Pfingst BE; Raphael Y; Grosh K
    Sci Rep; 2019 Mar; 9(1):3711. PubMed ID: 30842456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-high-frequency two-port AlN contour-mode resonators for RF applications.
    Rinaldi M; Zuniga C; Zuo C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation.
    Dobrev I; Farahmandi T; Pfiffner F; Röösli C
    Hear Res; 2022 Aug; 421():108506. PubMed ID: 35459531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.
    Gesing AL; Alves FDP; Paul S; Cordioli JA
    Sci Rep; 2018 Mar; 8(1):3920. PubMed ID: 29500435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity enhancement of a folded beam MEMS capacitive accelerometer-based microphone for fully implantable hearing application.
    Dwivedi A; Khanna G
    Biomed Tech (Berl); 2018 Nov; 63(6):699-708. PubMed ID: 29087950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A micro-force sensor with slotted-quad-beam structure for measuring the friction in MEMS bearings.
    Liu H; Yang S; Zhao Y; Jiang Z; Liu Y; Tian B
    Sensors (Basel); 2013 Sep; 13(10):13178-91. PubMed ID: 24084112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe.
    Mu X; Zhou G; Yu H; Du Y; Feng H; Tsai JM; Chau FS
    Opt Express; 2012 Mar; 20(6):6325-39. PubMed ID: 22418514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The middle ear bioelectronic microphone for a totally implantable cochlear hearing device for profound and total hearing loss.
    Maniglia AJ; Abbass H; Azar T; Kane M; Amantia P; Garverick S; Ko WH; Frenz W; Falk T
    Am J Otol; 1999 Sep; 20(5):602-11. PubMed ID: 10503582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design considerations and performance of MEMS acoustoelectric ultrasound detectors.
    Wang Z; Ingram P; Greenlee CL; Olafsson R; Norwood RA; Witte RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1906-16. PubMed ID: 24658721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.