These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28029794)

  • 1. A Monte Carlo Resampling Approach for the Calculation of Hybrid Classical and Quantum Free Energies.
    Cave-Ayland C; Skylaris CK; Essex JW
    J Chem Theory Comput; 2017 Feb; 13(2):415-424. PubMed ID: 28029794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct validation of the single step classical to quantum free energy perturbation.
    Cave-Ayland C; Skylaris CK; Essex JW
    J Phys Chem B; 2015 Jan; 119(3):1017-25. PubMed ID: 25238649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes.
    König G; Hudson PS; Boresch S; Woodcock HL
    J Chem Theory Comput; 2014 Apr; 10(4):1406-1419. PubMed ID: 24803863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.
    Sampson C; Fox T; Tautermann CS; Woods C; Skylaris CK
    J Phys Chem B; 2015 Jun; 119(23):7030-40. PubMed ID: 25985723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
    König G; Mei Y; Pickard FC; Simmonett AC; Miller BT; Herbert JM; Woodcock HL; Brooks BR; Shao Y
    J Chem Theory Comput; 2016 Jan; 12(1):332-44. PubMed ID: 26613419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.
    Faheem M; Heyden A
    J Chem Theory Comput; 2014 Aug; 10(8):3354-68. PubMed ID: 26588304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies.
    Woods CJ; Manby FR; Mulholland AJ
    J Chem Phys; 2008 Jan; 128(1):014109. PubMed ID: 18190187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple QM/MM approach for capturing polarization effects in protein-ligand binding free energy calculations.
    Beierlein FR; Michel J; Essex JW
    J Phys Chem B; 2011 May; 115(17):4911-26. PubMed ID: 21476567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
    Dybeck EC; König G; Brooks BR; Shirts MR
    J Chem Theory Comput; 2016 Apr; 12(4):1466-80. PubMed ID: 26928941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of QM/MM Methods To Obtain Ligand-Binding Free Energies.
    Olsson MA; Ryde U
    J Chem Theory Comput; 2017 May; 13(5):2245-2253. PubMed ID: 28355487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.
    Olsson MA; Söderhjelm P; Ryde U
    J Comput Chem; 2016 Jun; 37(17):1589-600. PubMed ID: 27117350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding free energies in the SAMPL6 octa-acid host-guest challenge calculated with MM and QM methods.
    Caldararu O; Olsson MA; Misini Ignjatović M; Wang M; Ryde U
    J Comput Aided Mol Des; 2018 Oct; 32(10):1027-1046. PubMed ID: 30203229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations.
    Lev B; Roux B; Noskov SY
    J Chem Theory Comput; 2013 Sep; 9(9):4165-75. PubMed ID: 26592407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model.
    Genheden S; Ryde U; Söderhjelm P
    J Comput Chem; 2015 Oct; 36(28):2114-24. PubMed ID: 26280564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations.
    Heimdal J; Ryde U
    Phys Chem Chem Phys; 2012 Sep; 14(36):12592-604. PubMed ID: 22797613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.