These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 28030843)
1. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Zhen S; Takahashi Y; Narita S; Yang YC; Li X Oncotarget; 2017 Feb; 8(6):9375-9387. PubMed ID: 28030843 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Zhen S; Hua L; Liu YH; Sun XM; Jiang MM; Chen W; Zhao L; Li X Oncotarget; 2017 Feb; 8(6):9634-9646. PubMed ID: 28038452 [TBL] [Abstract][Full Text] [Related]
3. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Liang C; Li F; Wang L; Zhang ZK; Wang C; He B; Li J; Chen Z; Shaikh AB; Liu J; Wu X; Peng S; Dang L; Guo B; He X; Au DWT; Lu C; Zhu H; Zhang BT; Lu A; Zhang G Biomaterials; 2017 Dec; 147():68-85. PubMed ID: 28938163 [TBL] [Abstract][Full Text] [Related]
4. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Xiang B; Dong DW; Shi NQ; Gao W; Yang ZZ; Cui Y; Cao DY; Qi XR Biomaterials; 2013 Sep; 34(28):6976-91. PubMed ID: 23777916 [TBL] [Abstract][Full Text] [Related]
5. An In Vivo CRISPR Screen Identifies Stepwise Genetic Dependencies of Metastatic Progression. Scheidmann MC; Castro-Giner F; Strittmatter K; Krol I; Paasinen-Sohns A; Scherrer R; Donato C; Gkountela S; Szczerba BM; Diamantopoulou Z; Muenst S; Vlajnic T; Kunz L; Vetter M; Rochlitz C; Taylor V; Giachino C; Schroeder T; Platt RJ; Aceto N Cancer Res; 2022 Feb; 82(4):681-694. PubMed ID: 34916221 [TBL] [Abstract][Full Text] [Related]
6. Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated dual-aptamer modified drug delivery system. Jing P; Cao S; Xiao S; Zhang X; Ke S; Ke F; Yu X; Wang L; Wang S; Luo Y; Zhong Z Cancer Lett; 2016 Dec; 383(2):230-242. PubMed ID: 27721020 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cas9 in genome editing: Its function and medical applications. Khadempar S; Familghadakchi S; Motlagh RA; Farahani N; Dashtiahangar M; Rezaei H; Gheibi Hayat SM J Cell Physiol; 2019 May; 234(5):5751-5761. PubMed ID: 30362544 [TBL] [Abstract][Full Text] [Related]
9. Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes. Zhen S; Liu Y; Lu J; Tuo X; Yang X; Chen H; Chen W; Li X Hum Gene Ther; 2020 Mar; 31(5-6):309-324. PubMed ID: 31973584 [TBL] [Abstract][Full Text] [Related]
10. Targeting gene therapy for prostate cancer cells by liposomes complexed with anti-prostate-specific membrane antigen monoclonal antibody. Ikegami S; Yamakami K; Ono T; Sato M; Suzuki S; Yoshimura I; Asano T; Hayakawa M; Tadakuma T Hum Gene Ther; 2006 Oct; 17(10):997-1005. PubMed ID: 17032155 [TBL] [Abstract][Full Text] [Related]
11. Gene Targeting of HPV18 E6 and E7 Synchronously by Nonviral Transfection of CRISPR/Cas9 System in Cervical Cancer. Ling K; Yang L; Yang N; Chen M; Wang Y; Liang S; Li Y; Jiang L; Yan P; Liang Z Hum Gene Ther; 2020 Mar; 31(5-6):297-308. PubMed ID: 31989837 [TBL] [Abstract][Full Text] [Related]
12. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199 [TBL] [Abstract][Full Text] [Related]
13. Brain-Targeted Cas12a Ribonucleoprotein Nanocapsules Enable Synergetic Gene Co-Editing Leading to Potent Inhibition of Orthotopic Glioblastoma. Ruan W; Xu S; An Y; Cui Y; Liu Y; Wang Y; Ismail M; Liu Y; Zheng M Adv Sci (Weinh); 2024 Sep; 11(33):e2402178. PubMed ID: 38943253 [TBL] [Abstract][Full Text] [Related]
14. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601 [TBL] [Abstract][Full Text] [Related]
15. CRISPR as a Diagnostic Tool. Kim S; Ji S; Koh HR Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439828 [TBL] [Abstract][Full Text] [Related]
16. Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy. Wang P; Zhang L; Zheng W; Cong L; Guo Z; Xie Y; Wang L; Tang R; Feng Q; Hamada Y; Gonda K; Hu Z; Wu X; Jiang X Angew Chem Int Ed Engl; 2018 Feb; 57(6):1491-1496. PubMed ID: 29282854 [TBL] [Abstract][Full Text] [Related]
17. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040 [TBL] [Abstract][Full Text] [Related]
19. A Self-Assembled Platform Based on Branched DNA for sgRNA/Cas9/Antisense Delivery. Liu J; Wu T; Lu X; Wu X; Liu S; Zhao S; Xu X; Ding B J Am Chem Soc; 2019 Dec; 141(48):19032-19037. PubMed ID: 31729871 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Sun W; Ji W; Hall JM; Hu Q; Wang C; Beisel CL; Gu Z Angew Chem Int Ed Engl; 2015 Oct; 54(41):12029-33. PubMed ID: 26310292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]