BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28031268)

  • 1. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
    Ide S; Takahashi T; Takamatsu Y; Uhl GR; Niki H; Sora I; Ikeda K
    Int J Neuropsychopharmacol; 2017 May; 20(5):403-409. PubMed ID: 28031268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-enhancing effect of methylphenidate is abolished in dopamine transporter knockout mice: A model of attention-deficit/hyperactivity disorder.
    Ide S; Ikekubo Y; Hua J; Takamatsu Y; Uhl GR; Sora I; Ikeda K
    Neuropsychopharmacol Rep; 2018 Sep; 38(3):149-153. PubMed ID: 30175528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine.
    Simon MJ; Zafra MA; Puerto A
    J Psychopharmacol; 2019 Dec; 33(12):1475-1490. PubMed ID: 31282233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in D1 but not D2 dopamine or mu-opioid receptor expression in limbic and motor structures after lateral hypothalamus electrical self-stimulation: A quantitative autoradiographic study.
    Simon MJ; Higuera-Matas A; Roura-Martinez D; Ucha M; Santos-Toscano R; Garcia-Lecumberri C; Ambrosio E; Puerto A
    Neurobiol Learn Mem; 2016 Jan; 127():17-26. PubMed ID: 26656274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rewarding properties of MDMA are preserved in mice lacking mu-opioid receptors.
    Robledo P; Mendizabal V; Ortuño J; de la Torre R; Kieffer BL; Maldonado R
    Eur J Neurosci; 2004 Aug; 20(3):853-8. PubMed ID: 15255997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice.
    Elmer GI; Pieper JO; Levy J; Rubinstein M; Low MJ; Grandy DK; Wise RA
    Psychopharmacology (Berl); 2005 Oct; 182(1):33-44. PubMed ID: 16136297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic 'binge' cocaine administration.
    Bailey A; Yoo JH; Racz I; Zimmer A; Kitchen I
    J Neurochem; 2007 Sep; 102(6):1817-1830. PubMed ID: 17532787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced psychostimulant effects on dopamine dynamics in the nucleus accumbens of mu-opioid receptor knockout mice.
    Mathon DS; Vanderschuren LJ; Ramakers GM
    Neuroscience; 2006 Sep; 141(4):1679-84. PubMed ID: 16777349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission.
    Femenía T; Manzanares J
    Addict Biol; 2012 Mar; 17(2):322-37. PubMed ID: 21966993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mu-opioid receptor knockout mice show diminished food-anticipatory activity.
    Kas MJ; van den Bos R; Baars AM; Lubbers M; Lesscher HM; Hillebrand JJ; Schuller AG; Pintar JE; Spruijt BM
    Eur J Neurosci; 2004 Sep; 20(6):1624-32. PubMed ID: 15355329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of chronic voluntary wheel-running on morphine induced brain stimulation reward, motor activity and striatal dopaminergic activity.
    Katsidoni V; Tzatzarakis MN; Karzi V; Thermos K; Kastellakis A; Panagis G
    Behav Brain Res; 2020 Sep; 394():112831. PubMed ID: 32721470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of nicotine-induced behavioral sensitization in micro-opioid receptor knockout mice.
    Yoo JH; Lee SY; Loh HH; Ho IK; Jang CG
    Synapse; 2004 Mar; 51(4):219-23. PubMed ID: 14696009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two intracranial self-stimulation (ICSS) paradigms in C57BL/6 mice: head-dipping and place-learning.
    Ikeda K; Moss SJ; Fowler SC; Niki H
    Behav Brain Res; 2001 Nov; 126(1-2):49-56. PubMed ID: 11704251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward.
    David V; Matifas A; Gavello-Baudy S; Decorte L; Kieffer BL; Cazala P
    Neuropsychopharmacology; 2008 Jun; 33(7):1746-59. PubMed ID: 17895918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of reward and locomotor stimulation induced by heroin in mu-opioid receptor-deficient mice.
    Contarino A; Picetti R; Matthes HW; Koob GF; Kieffer BL; Gold LH
    Eur J Pharmacol; 2002 Jun; 446(1-3):103-9. PubMed ID: 12098591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pharmacogenetic determinant of mu-opioid receptor antagonist effects on alcohol reward and consumption: evidence from humanized mice.
    Bilbao A; Robinson JE; Heilig M; Malanga CJ; Spanagel R; Sommer WH; Thorsell A
    Biol Psychiatry; 2015 May; 77(10):850-8. PubMed ID: 25442002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats.
    Todtenkopf MS; Marcus JF; Portoghese PS; Carlezon WA
    Psychopharmacology (Berl); 2004 Apr; 172(4):463-70. PubMed ID: 14727002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of μ-opioid receptor knockout mice.
    Park SW; He Z; Shen X; Roman RJ; Ma T
    Int J Neurosci; 2012 Jun; 122(6):305-13. PubMed ID: 22329540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid operant self-administration, analgesia, stimulation and respiratory depression in mu-deficient mice.
    Elmer GI; Pieper JO; Goldberg SR; George FR
    Psychopharmacology (Berl); 1995 Jan; 117(1):23-31. PubMed ID: 7724699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewarding stimulation of the lateral hypothalamus induces a dopamine-dependent suppression of synaptic responses in the entorhinal cortex.
    Hutter JA; Martel A; Trigiani L; Barrett SG; Chapman CA
    Behav Brain Res; 2013 Sep; 252():266-74. PubMed ID: 23747609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.