These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28032223)

  • 1. Reactivity and regioselectivity in reactions of methyl and ethyl azides with cyclooctynes: activation strain model and energy decomposition analysis.
    de S Vilhena F; de M Carneiro JW
    J Mol Model; 2017 Jan; 23(1):14. PubMed ID: 28032223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of the mechanism and regioselectivity of the 1, 3-dipolar cycloaddition of E-3-(dimethylamino)-1-(10H-phenothiazin-2-yl)prop-2-en-1-one with some nitrilimines using DFT and the distortion/interaction model.
    Moeinpour F; Khojastehnezhad A
    Acta Chim Slov; 2015; 62(2):403-10. PubMed ID: 26085424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Study of the Regiochemistry of 1,3-Dipolar Cycloadditions. Reactions of Diazomethane and Formonitrile Oxide with Ethene, Propene, Acrylonitrile, and Methyl Vinyl Ether.
    Rastelli A; Gandolfi R; Sarzi Amadè M
    J Org Chem; 1998 Oct; 63(21):7425-7436. PubMed ID: 11672394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Free Azide-Alkyne Click Reaction: Role of Substituents and Heavy Atom Tunneling.
    Karmakar S; Datta A
    J Phys Chem B; 2015 Sep; 119(35):11540-7. PubMed ID: 26264958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Looking at the big picture in activation strain model/energy decomposition analysis: the case of the ortho-para regioselectivity rule in Diels-Alder reactions.
    Grimblat N; Sarotti AM
    Org Biomol Chem; 2020 Feb; 18(6):1104-1111. PubMed ID: 31950965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dibenzocyclooctynes: Effect of Aryl Substitution on Their Reactivity toward Strain-Promoted Alkyne-Azide Cycloaddition.
    Terzic V; Pousse G; Méallet-Renault R; Grellier P; Dubois J
    J Org Chem; 2019 Jul; 84(13):8542-8551. PubMed ID: 31199143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes.
    Svatunek D; Murnauer A; Tan Z; Houk KN; Lang K
    Chem Sci; 2024 Feb; 15(6):2229-2235. PubMed ID: 38332832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory study of the intramolecular [2 + 3] cycloaddition of azide to nitriles.
    Himo F; Demko ZP; Noodleman L
    J Org Chem; 2003 Nov; 68(23):9076-80. PubMed ID: 14604383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Exploration of Ambiphilic Reactivity of Azides and Sustmann's Paradigmatic Parabola.
    Chen PP; Ma P; He X; Svatunek D; Liu F; Houk KN
    J Org Chem; 2021 Apr; 86(8):5792-5804. PubMed ID: 33769821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the 1,3-DC reaction between fluorinated alkynes and azides: Reactivity indices, transition structures, IGM and ELF analysis.
    Salah M; Zeroual A; Jorio S; El Hadki H; Kabbaj OK; Marakchi K; Komiha N
    J Mol Graph Model; 2020 Jan; 94():107458. PubMed ID: 31726313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regio- and stereoselectivity of the [3+2] cycloaddition of nitrones with methyl-acetophenone: A DFT investigation.
    Zouaghi MO; Doggui MY; Arfaoui Y
    J Mol Graph Model; 2021 Sep; 107():107960. PubMed ID: 34126545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT study on the mechanisms for the cycloaddition reactions between 1-aza-2-azoniaallene cations and acetylenes.
    Wang JM; Li ZM; Wang QR; Tao FG
    J Mol Model; 2013 Jan; 19(1):83-95. PubMed ID: 22810049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arylazide cycloaddition to methyl propiolate: DFT-based quantitative prediction of regioselectivity.
    Molteni G; Ponti A
    Chemistry; 2003 Jun; 9(12):2770-4. PubMed ID: 12866540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Group 15 elements on the [3 + 2] cycloaddition reactivity of G15 = G15-G15-based 1,3-dipoles with cyclooctyne.
    Zhang ZF; Su MD
    Dalton Trans; 2023 Apr; 52(15):4796-4807. PubMed ID: 36939158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.