BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28032286)

  • 1. Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics.
    Han L; Qian L; Yan J; Chen M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5554-5565. PubMed ID: 28032286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.
    Yang K; Jiang Y; Yang J; Lin D
    Environ Pollut; 2018 Feb; 233():64-70. PubMed ID: 29053999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Pd/Fe-biochar composites for the complete removal of trichlorobenzene and its degradation products.
    Han L; Yan J; Qian L; Zhang W; Chen M
    J Environ Manage; 2019 Sep; 245():238-244. PubMed ID: 31154170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures.
    Han L; Qian L; Yan J; Chen M
    Chemosphere; 2016 Aug; 156():262-271. PubMed ID: 27179244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar.
    Yang K; Yang J; Jiang Y; Wu W; Lin D
    Environ Pollut; 2016 Mar; 210():57-64. PubMed ID: 26708759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures.
    Wang Z; Han L; Sun K; Jin J; Ro KS; Libra JA; Liu X; Xing B
    Chemosphere; 2016 Feb; 144():285-91. PubMed ID: 26364218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of chlorinated hydrocarbons to biochars in aqueous environment: Effects of the amorphous carbon structure of biochars and the molecular properties of adsorbates.
    Chen W; Wei R; Ni J; Yang L; Qian W; Yang Y
    Chemosphere; 2018 Nov; 210():753-761. PubMed ID: 30036823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption.
    Zhang P; Sun H; Ren C; Min L; Zhang H
    Environ Pollut; 2018 Mar; 234():812-820. PubMed ID: 29247944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes.
    Ahmad M; Lee SS; Oh SE; Mohan D; Moon DH; Lee YH; Ok YS
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8364-73. PubMed ID: 23608978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-sorption/co-desorption mechanism of the mixed chlorobenzenes by fresh bulk and aged residual biochar.
    Han L; Wu W; Chen X; Chen M
    J Hazard Mater; 2022 May; 429():128349. PubMed ID: 35101763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures.
    Ahmad M; Lee SS; Rajapaksha AU; Vithanage M; Zhang M; Cho JS; Lee SE; Ok YS
    Bioresour Technol; 2013 Sep; 143():615-22. PubMed ID: 23838320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups.
    Fang Q; Chen B; Lin Y; Guan Y
    Environ Sci Technol; 2014; 48(1):279-88. PubMed ID: 24289306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sorption of
    Ma FF; Zhao BW
    Huan Jing Ke Xue; 2017 Feb; 38(2):837-844. PubMed ID: 29964545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks.
    Vithanage M; Mayakaduwa SS; Herath I; Ok YS; Mohan D
    Chemosphere; 2016 May; 150():781-789. PubMed ID: 26607239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations.
    Zhang K; Chen B; Mao J; Zhu L; Xing B
    Environ Pollut; 2018 Sep; 240():342-352. PubMed ID: 29751330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar.
    Kupryianchyk D; Hale S; Zimmerman AR; Harvey O; Rutherford D; Abiven S; Knicker H; Schmidt HP; Rumpel C; Cornelissen G
    Chemosphere; 2016 Feb; 144():879-87. PubMed ID: 26421628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.
    Zhang M; Shu L; Shen X; Guo X; Tao S; Xing B; Wang X
    Environ Pollut; 2014 Dec; 195():84-90. PubMed ID: 25194275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.
    Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.