BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28032621)

  • 21. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.
    Graeser M; Knopp T; Szwargulski P; Friedrich T; von Gladiss A; Kaul M; Krishnan KM; Ittrich H; Adam G; Buzug TM
    Sci Rep; 2017 Jul; 7(1):6872. PubMed ID: 28761103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 23. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.
    Alvarez-Berríos MP; Castillo A; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2014; 9():145-53. PubMed ID: 24379665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic particle imaging: current developments and future directions.
    Panagiotopoulos N; Duschka RL; Ahlborg M; Bringout G; Debbeler C; Graeser M; Kaethner C; Lüdtke-Buzug K; Medimagh H; Stelzner J; Buzug TM; Barkhausen J; Vogt FM; Haegele J
    Int J Nanomedicine; 2015; 10():3097-114. PubMed ID: 25960650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.
    Dadfar SM; Roemhild K; Drude NI; von Stillfried S; Knüchel R; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2019 Jan; 138():302-325. PubMed ID: 30639256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences.
    Duschka RL; Wojtczyk H; Panagiotopoulos N; Haegele J; Bringout G; Buzug TM; Barkhausen J; Vogt FM
    J Healthc Eng; 2014; 5(1):79-93. PubMed ID: 24691388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices.
    Hajba L; Guttman A
    Biotechnol Adv; 2016; 34(4):354-361. PubMed ID: 26853617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steering of Magnetic Devices With a Magnetic Particle Imaging System.
    Nothnagel N; Rahmer J; Gleich B; Halkola A; Buzug TM; Borgert J
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2286-2293. PubMed ID: 27046918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.
    Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R
    Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods.
    Papadopoulos C; Efthimiadou EK; Pissas M; Fuentes D; Boukos N; Psycharis V; Kordas G; Loukopoulos VC; Kagadis GC
    Phys Med; 2020 Mar; 71():39-52. PubMed ID: 32088564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.
    Suriyanto ; Ng EY; Kumar SD
    Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axially elongated field-free point data acquisition in magnetic particle imaging.
    Kaethner C; Ahlborg M; Bringout G; Weber M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):381-7. PubMed ID: 25222946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.
    Rodríguez-Luccioni HL; Latorre-Esteves M; Méndez-Vega J; Soto O; Rodríguez AR; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2011; 6():373-80. PubMed ID: 21499427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-tissue localization of magnetic field hyperthermia using pulse sequencing.
    Tansi FL; Maduabuchi WO; Hirsch M; Southern P; Hattersley S; Quaas R; Teichgräber U; Pankhurst QA; Hilger I
    Int J Hyperthermia; 2021; 38(1):743-754. PubMed ID: 33941016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments.
    Miaskowski A; Balakrishnan P; Subramanian M; Hovorka O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3991-3994. PubMed ID: 31946746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity.
    Williams JP; Southern P; Lissina A; Christian HC; Sewell AK; Phillips R; Pankhurst Q; Frater J
    Int J Nanomedicine; 2013; 8():2543-54. PubMed ID: 23901272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning for improving the spatial resolution of magnetic particle imaging.
    Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677
    [No Abstract]   [Full Text] [Related]  

  • 40. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.
    Bente K; Weber M; Graeser M; Sattel TF; Erbe M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):644-51. PubMed ID: 25350924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.