BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28032621)

  • 41. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.
    Arami H; Khandhar AP; Tomitaka A; Yu E; Goodwill PW; Conolly SM; Krishnan KM
    Biomaterials; 2015 Jun; 52():251-61. PubMed ID: 25818431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes.
    Jung KO; Jo H; Yu JH; Gambhir SS; Pratx G
    Biomaterials; 2018 Sep; 177():139-148. PubMed ID: 29890363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
    Lin M; Huang J; Sha M
    J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effectiveness of magnetic fluid hyperthermia against Candida albicans cells.
    Chudzik B; Miaskowski A; Surowiec Z; Czernel G; Duluk T; Marczuk A; Gagoś M
    Int J Hyperthermia; 2016 Dec; 32(8):842-857. PubMed ID: 27418322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging.
    Pantke D; Mueller F; Reinartz S; Philipps J; Mohammadali Dadfar S; Peters M; Franke J; Schrank F; Kiessling F; Schulz V
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35472698
    [No Abstract]   [Full Text] [Related]  

  • 47. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.
    Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA
    Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells.
    Engelmann UM; Roeth AA; Eberbeck D; Buhl EM; Neumann UP; Schmitz-Rode T; Slabu I
    Sci Rep; 2018 Sep; 8(1):13210. PubMed ID: 30181576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields.
    Rivera-Rodriguez A; Rinaldi-Ramos CM
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():163-185. PubMed ID: 33856937
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.
    Vaalma S; Rahmer J; Panagiotopoulos N; Duschka RL; Borgert J; Barkhausen J; Vogt FM; Haegele J
    PLoS One; 2017; 12(1):e0168902. PubMed ID: 28056102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. System Characterization of a Highly Integrated Preclinical Hybrid MPI-MRI Scanner.
    Franke J; Heinen U; Lehr H; Weber A; Jaspard F; Ruhm W; Heidenreich M; Schulz V
    IEEE Trans Med Imaging; 2016 Sep; 35(9):1993-2004. PubMed ID: 26991821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic Particle Imaging Tracers: State-of-the-Art and Future Directions.
    Bauer LM; Situ SF; Griswold MA; Samia AC
    J Phys Chem Lett; 2015 Jul; 6(13):2509-17. PubMed ID: 26266727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Traveling wave magnetic particle imaging.
    Vogel P; Ruckert MA; Klauer P; Kullmann WH; Jakob PM; Behr VC
    IEEE Trans Med Imaging; 2014 Feb; 33(2):400-7. PubMed ID: 24132006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation.
    Nandwana V; Ryoo SR; Kanthala S; De M; Chou SS; Prasad PV; Dravid VP
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6953-61. PubMed ID: 26936392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-color magnetic particle imaging for cardiovascular interventions.
    Haegele J; Vaalma S; Panagiotopoulos N; Barkhausen J; Vogt FM; Borgert J; Rahmer J
    Phys Med Biol; 2016 Aug; 61(16):N415-26. PubMed ID: 27476675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-space MPI: magnetic nanoparticles for safe medical imaging.
    Goodwill PW; Saritas EU; Croft LR; Kim TN; Krishnan KM; Schaffer DV; Conolly SM
    Adv Mater; 2012 Jul; 24(28):3870-7. PubMed ID: 22988557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
    Du Y; Lai PT; Leung CH; Pong PW
    Int J Mol Sci; 2013 Sep; 14(9):18682-710. PubMed ID: 24030719
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging.
    Muslu Y; Utkur M; Demirel OB; Saritas EU
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1920-1931. PubMed ID: 29993774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Developments in Magnetic Hyperthermia Therapy (MHT) and Magnetic Particle Imaging (MPI) in the Brain Tumor Field: A Scoping Review and Meta-Analysis.
    Rentzeperis F; Rivera D; Zhang JY; Brown C; Young T; Rodriguez B; Schupper A; Price G; Gomberg J; Williams T; Bouras A; Hadjipanayis C
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.