These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 28032748)

  • 21. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High capacity all-solid-state lithium battery enabled by
    Inoishi A; Sato H; Chen Y; Saito H; Sakamoto R; Sakaebe H; Okada S
    RSC Adv; 2022 Mar; 12(17):10749-10754. PubMed ID: 35424984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Synthesis of Core-Shell Structured SiO
    Pang H; Zhang W; Yu P; Pan N; Hu H; Zheng M; Xiao Y; Liu Y; Liang Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32178223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Organic Framework Template Synthesis of NiCo
    Yuan D; Huang G; Yin D; Wang X; Wang C; Wang L
    ACS Appl Mater Interfaces; 2017 May; 9(21):18178-18186. PubMed ID: 28488853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon-Coated Fe
    Zhao ZW; Wen T; Liang K; Jiang YF; Zhou X; Shen CC; Xu AW
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3757-3765. PubMed ID: 28071884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.
    Ren J; Ren RP; Lv YK
    Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The electrochemical storage mechanism of an In
    Yuan Y; Yang M; Liu L; Xia J; Yan H; Liu J; Wen J; Zhang Y; Wang X
    Nanoscale; 2020 Oct; 12(39):20337-20346. PubMed ID: 33006354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries.
    Wu JF; Guo X
    Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery.
    Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superior-capacity binder-free anode electrode for lithium-ion batteries: Co
    Li Q; Feng Y; Wang P; Che R
    Nanoscale; 2019 Mar; 11(11):5080-5093. PubMed ID: 30839963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH
    Gulino V; Brighi M; Murgia F; Ngene P; de Jongh P; Černý R; Baricco M
    ACS Appl Energy Mater; 2021 Feb; 4(2):1228-1236. PubMed ID: 33644698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries.
    Liu Y; Lin D; Jin Y; Liu K; Tao X; Zhang Q; Zhang X; Cui Y
    Sci Adv; 2017 Oct; 3(10):eaao0713. PubMed ID: 29062894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interpenetrated Networks between Graphitic Carbon Infilling and Ultrafine TiO
    Zheng W; Yan Z; Dai Y; Du N; Jiang X; Dai H; Li X; He G
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20491-20500. PubMed ID: 28569503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A 3D polyacrylonitrile nanofiber and flexible polydimethylsiloxane macromolecule combined all-solid-state composite electrolyte for efficient lithium metal batteries.
    Gao L; Li J; Sarmad B; Cheng B; Kang W; Deng N
    Nanoscale; 2020 Jul; 12(26):14279-14289. PubMed ID: 32609141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.