These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28032950)

  • 21. ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel.
    Mishra A; Dhiman S; George SJ
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2740-2756. PubMed ID: 32519456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical fuel-driven living and transient supramolecular polymerization.
    Jain A; Dhiman S; Dhayani A; Vemula PK; George SJ
    Nat Commun; 2019 Jan; 10(1):450. PubMed ID: 30683874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular chirality of self-assembled systems in solution.
    Mateos-Timoneda MA; Crego-Calama M; Reinhoudt DN
    Chem Soc Rev; 2004 Jul; 33(6):363-72. PubMed ID: 15280969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems.
    Lang X; Huang Y; He L; Wang Y; Thumu U; Chu Z; Huck WTS; Zhao H
    Nat Commun; 2023 May; 14(1):3084. PubMed ID: 37248275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks.
    Kamra A; Das S; Bhatt P; Solra M; Maity T; Rana S
    Chem Sci; 2023 Sep; 14(35):9267-9282. PubMed ID: 37712020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions.
    Mukhopadhyay RD; Choi S; Sen SK; Hwang IC; Kim K
    Chem Asian J; 2020 Dec; 15(23):4118-4123. PubMed ID: 33135872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides.
    Manchineella S; Prathyusha V; Priyakumar UD; Govindaraju T
    Chemistry; 2013 Dec; 19(49):16615-24. PubMed ID: 24281809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Helicity Control of Supramolecular Gel Fibers Consisting of an Achiral Ni
    Maeda T; Kuwajima Y; Akita T; Iwai Y; Komiya N; Uchida Y; Naota T
    Chemistry; 2018 Aug; 24(48):12546-12554. PubMed ID: 29863759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplification of chirality of the majority-rules type in helical supramolecular polymers: the impact of the presence of achiral monomers.
    van Gestel J
    J Phys Chem B; 2006 Mar; 110(9):4365-70. PubMed ID: 16509736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fuel-Selective Transient Activation of Nanosystems for Signal Generation.
    Della Sala F; Maiti S; Bonanni A; Scrimin P; Prins LJ
    Angew Chem Int Ed Engl; 2018 Feb; 57(6):1611-1615. PubMed ID: 29274255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent-Directed Helical Stereomutation Discloses Pathway Complexity on N-Heterotriangulene-Based Organogelators.
    Valera JS; Sánchez-Naya R; Ramírez FJ; Zafra JL; Gómez R; Casado J; Sánchez L
    Chemistry; 2017 Aug; 23(46):11141-11146. PubMed ID: 28590076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organocatalytic Control over a Fuel-Driven Transient-Esterification Network*.
    van der Helm MP; Wang CL; Fan B; Macchione M; Mendes E; Eelkema R
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20604-20611. PubMed ID: 32700406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single- and double-stranded helical polymers: synthesis, structures, and functions.
    Yashima E; Maeda K; Furusho Y
    Acc Chem Res; 2008 Sep; 41(9):1166-80. PubMed ID: 18690750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designed Negative Feedback from Transiently Formed Catalytic Nanostructures.
    Afrose SP; Bal S; Chatterjee A; Das K; Das D
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15783-15787. PubMed ID: 31476101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy consumption in chemical fuel-driven self-assembly.
    Ragazzon G; Prins LJ
    Nat Nanotechnol; 2018 Oct; 13(10):882-889. PubMed ID: 30224796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection and amplification of chirality by helical polymers.
    Yashima E; Maeda K; Nishimura T
    Chemistry; 2004 Jan; 10(1):42-51. PubMed ID: 14695548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-controllable cell-penetrating polypeptide that exhibits cancer targeting.
    Lee D; Noh I; Yoo J; Rejinold NS; Kim YC
    Acta Biomater; 2017 Jul; 57():187-196. PubMed ID: 28528116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role reversal in a supramolecular assembly: a chiral cyanine dye controls the helicity of a peptide-nucleic acid duplex.
    Renikuntla BR; Armitage BA
    Langmuir; 2005 Jun; 21(12):5362-6. PubMed ID: 15924462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly.
    Singh N; Formon GJM; De Piccoli S; Hermans TM
    Adv Mater; 2020 May; 32(20):e1906834. PubMed ID: 32064688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.