These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 28032975)
1. Thermosensitive ZrP-PNIPAM Pickering Emulsifier and the Controlled-Release Behavior. Wang X; Zeng M; Yu YH; Wang H; Mannan MS; Cheng Z ACS Appl Mater Interfaces; 2017 Mar; 9(8):7852-7858. PubMed ID: 28032975 [TBL] [Abstract][Full Text] [Related]
8. Double emulsions and colloidosomes-in-colloidosomes using silica-based Pickering emulsifiers. Williams M; Armes SP; Verstraete P; Smets J Langmuir; 2014 Mar; 30(10):2703-11. PubMed ID: 24559174 [TBL] [Abstract][Full Text] [Related]
9. Poly(N-isopropylacrylamide) microgels at the oil-water interface: interfacial properties as a function of temperature. Monteux C; Marlière C; Paris P; Pantoustier N; Sanson N; Perrin P Langmuir; 2010 Sep; 26(17):13839-46. PubMed ID: 20681739 [TBL] [Abstract][Full Text] [Related]
10. Macroporous polymer from core-shell particle-stabilized Pickering emulsions. Li Z; Ngai T Langmuir; 2010 Apr; 26(7):5088-92. PubMed ID: 20350011 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Pickering and network stabilization in water-in-oil emulsions. Ghosh S; Tran T; Rousseau D Langmuir; 2011 Jun; 27(11):6589-97. PubMed ID: 21528852 [TBL] [Abstract][Full Text] [Related]
12. Noninteracting versus interacting poly(N-isopropylacrylamide)-surfactant mixtures at the air-water interface. Jean B; Lee LT J Phys Chem B; 2005 Mar; 109(11):5162-7. PubMed ID: 16863180 [TBL] [Abstract][Full Text] [Related]
13. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components. Pippa N; Meristoudi A; Pispas S; Demetzos C Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453 [TBL] [Abstract][Full Text] [Related]
14. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect. Li Z; Richtering W; Ngai T Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011 [TBL] [Abstract][Full Text] [Related]
15. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles. Yang F; Niu Q; Lan Q; Sun D J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of Pickering Emulsions in the Presence of an Interfacial Reaction: A Simulation Study. Zhao S; Zhan B; Hu Y; Fan Z; Pera-Titus M; Liu H Langmuir; 2016 Dec; 32(49):12975-12985. PubMed ID: 27951708 [TBL] [Abstract][Full Text] [Related]
17. Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water pickering emulsion stabiliser. Kurukji D; Pichot R; Spyropoulos F; Norton IT J Colloid Interface Sci; 2013 Nov; 409():88-97. PubMed ID: 23972500 [TBL] [Abstract][Full Text] [Related]
19. Protein Nanocage as a pH-Switchable Pickering Emulsifier. Sarker M; Tomczak N; Lim S ACS Appl Mater Interfaces; 2017 Mar; 9(12):11193-11201. PubMed ID: 28290652 [TBL] [Abstract][Full Text] [Related]
20. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles. Yuan DB; Hu YQ; Zeng T; Yin SW; Tang CH; Yang XQ Food Funct; 2017 Jun; 8(6):2220-2230. PubMed ID: 28513748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]