These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 28033109)
1. Photoplethysmography for an independent measure of pulsatile pressure under controlled flow conditions. Njoum H; Kyriacou PA Physiol Meas; 2017 Feb; 38(2):87-100. PubMed ID: 28033109 [TBL] [Abstract][Full Text] [Related]
2. Photoplethysmography: Towards a non-invasive pressure measurement technique. Njoum H; Kyriacou PA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():611-614. PubMed ID: 28324935 [TBL] [Abstract][Full Text] [Related]
3. In vitro validation of measurement of volume elastic modulus using photoplethysmography. Njoum H; Kyriacou PA Med Eng Phys; 2018 Feb; 52():10-21. PubMed ID: 29290498 [TBL] [Abstract][Full Text] [Related]
4. Non-invasive continuous estimation of blood flow changes in human patellar bone. Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201 [TBL] [Abstract][Full Text] [Related]
5. Asymmetric time-dependent model for the dynamic finger arterial pressure-volume relationship. Talts J; Raamat R; Jagomägi K Med Biol Eng Comput; 2006 Sep; 44(9):829-34. PubMed ID: 16960748 [TBL] [Abstract][Full Text] [Related]
6. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals. Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008 [TBL] [Abstract][Full Text] [Related]
7. Changes in the arteriolar volume pulse of the finger during various degrees of tilt using near infra-red and red photoplethysmography. Christ F; Nehring I; Abicht J; Baranov V; Kotov A; Gartside I; Gamble J; Messmer K Eur J Med Res; 1998 May; 3(5):249-55. PubMed ID: 9580571 [TBL] [Abstract][Full Text] [Related]
8. Association of risk factors with increased pulse wave velocity detected by a novel method using dual-channel photoplethysmography. Tsai WC; Chen JY; Wang MC; Wu HT; Chi CK; Chen YK; Chen JH; Lin LJ Am J Hypertens; 2005 Aug; 18(8):1118-22. PubMed ID: 16109327 [TBL] [Abstract][Full Text] [Related]
9. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Li K; Zhang S; Yang L; Luo Z; Gu G Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969 [TBL] [Abstract][Full Text] [Related]
10. Time to consider the contact force during photoplethysmography measurement during pediatric anesthesia: A prospective, nonrandomized interventional study. Lee JH; Yang S; Park J; Kim HC; Kim EH; Jang YE; Kim JT; Kim HS Paediatr Anaesth; 2018 Jul; 28(7):660-667. PubMed ID: 29920853 [TBL] [Abstract][Full Text] [Related]
11. The effect of vascular changes on the photoplethysmographic signal at different hand elevations. Hickey M; Phillips JP; Kyriacou PA Physiol Meas; 2015 Mar; 36(3):425-40. PubMed ID: 25652182 [TBL] [Abstract][Full Text] [Related]
12. Comparison between reflection-mode photoplethysmography and arterial diameter change detected by ultrasound at the region of radial artery. Wang CZ; Zheng YP Blood Press Monit; 2010 Aug; 15(4):213-9. PubMed ID: 20410816 [TBL] [Abstract][Full Text] [Related]
13. Attenuation of the near-infrared and red photoplethysmographic signal by different depth of tissues. Niklas M; Moser U; Buehrer A; Valentin R; Abicht J; Baschnegger H; Christ F Eur J Med Res; 1998 May; 3(5):241-8. PubMed ID: 9580570 [TBL] [Abstract][Full Text] [Related]
14. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients. Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998 [TBL] [Abstract][Full Text] [Related]
15. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement. Foo JY; Wilson SJ J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348 [TBL] [Abstract][Full Text] [Related]
16. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. Abay TY; Kyriacou PA IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515 [TBL] [Abstract][Full Text] [Related]
17. Photoplethysmographic assessment of hemodynamic variations using pulsatile tissue blood volume. Foo JY; Lim CS; Wilson SJ Angiology; 2008 Dec-2009 Jan; 59(6):745-52. PubMed ID: 18388056 [TBL] [Abstract][Full Text] [Related]
18. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models. Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317 [TBL] [Abstract][Full Text] [Related]
19. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Shin H; Min SD Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939 [TBL] [Abstract][Full Text] [Related]
20. Calibrated photoplethysmographic estimation of digital pulse volume and arterial compliance. Raamat R; Jagomägi K; Talts J Clin Physiol Funct Imaging; 2007 Nov; 27(6):354-62. PubMed ID: 17944657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]